Large-scale data integration and harmonization to accurately predict sites facing future health-based drinking water crises

大规模数据整合和协调,以准确预测未来面临健康饮用水危机的地点

基本信息

  • 批准号:
    10253600
  • 负责人:
  • 金额:
    $ 25.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Project summary: Up to 45 million people per year in the U.S. are directly impacted by health-based drinking water problems. This leads to at least 16 million cases of acute gastroenteritis directly linked to pollution at community water systems, with tens of millions more directly impacted by chemical and organic pollutants. Impacts are further exacerbated in locations dealing with water scarcity, in under-served populations, and within other vulnerable populations already suffering from health disparities. Many of these water problems are the direct result of managerial negligence, inconsistent monitoring, and a lack of the ability to anticipate where problems may arise next. While the reasons for drinking water problems are complex, if we could anticipate where health-based drinking water problems were to occur in the future, it could have an immediate and positive impact on tens of millions of Americans annually. Interestingly, extensive data about water quality and the performance of municipal water systems already exists in large, disparate databases. These databases are largely ignored and, when used, are typically used only anecdotally and retroactively. Preliminary evidence suggests that these existing databases, which contain histories of administrative violations and sub-threshold water-quality results, can be mined to accurately predict future drinking water crises. The Superior Statistical Research R&D team is an internationally recognized group of water experts with cross-cutting expertise in statistics/data analysis/modelling/computing, water-quality monitoring of biological and chemical contaminants, and the ability to clearly and compellingly translate water-quality and health information to actionable steps for individuals, organizations and communities. In this Phase I project, we will show that it is possible to predict water-related, health-based problem areas utilizing already collected, historical data on water quality and municipal water system performance. We will begin by harmonizing the disparate water quality and municipal water system performance in two different states (Michigan and Iowa). We will then utilize machine-learning techniques to predict health-based violation histories and will evaluate our methods by comparing predicted violations to actual health-based violations in the previous 5 years. Finally, we will identify at least 10 municipalities determined by our algorithm to be at the highest risk for future health- based water problems and will do systematic sampling to confirm our model-based predictions. We will then demonstrate how making these predictions can be leveraged to profitability by exploring how our model-based predictions can be presented to customers in an economical, usable form. Proof of our concept and profitability models in two states (Phase I) will set us up for widespread (multi-state) database harmonization and improvement of the proposed machine-learning/modelling effort in Phase II. With multi-state harmonized datasets, identification of key data gaps in particular states/areas, and proven financial models, our technology will ultimately lead to dramatic reductions in the number of health-based drinking water problems annually.
项目总结:在美国,每年有多达4500万人直接受到健康饮酒的影响

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathan L Tintle其他文献

Plasma n6 polyunsaturated fatty acid levels and risk for total and cause-specific mortality: A prospective observational study from the UK Biobank
血浆 n6 多不饱和脂肪酸水平与全因死亡率及特定病因死亡率的风险:一项来自英国生物样本库的前瞻性观察研究
  • DOI:
    10.1016/j.ajcnut.2024.08.020
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    William S Harris;Jason Westra;Nathan L Tintle;Aleix Sala-Vila;Jason HY Wu;Matti Marklund
  • 通讯作者:
    Matti Marklund

Nathan L Tintle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathan L Tintle', 18)}}的其他基金

Novel methods to improve the utility of genomics summary statistics
提高基因组学汇总统计效用的新方法
  • 批准号:
    10646125
  • 财政年份:
    2023
  • 资助金额:
    $ 25.66万
  • 项目类别:
Wastewater data integration and modelling to accurately predict community and organizational outbreaks due to viral pathogens
废水数据集成和建模,以准确预测病毒病原体引起的社区和组织爆发
  • 批准号:
    10481536
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
Wastewater data integration and modelling to accurately predict community and organizational outbreaks due to viral pathogens
废水数据集成和建模,以准确预测病毒病原体引起的社区和组织爆发
  • 批准号:
    10768053
  • 财政年份:
    2022
  • 资助金额:
    $ 25.66万
  • 项目类别:
Analyzing the behavior and interpreting the results of gene based tests of rare variant association
分析罕见变异关联的行为并解释基于基因的测试结果
  • 批准号:
    9099474
  • 财政年份:
    2012
  • 资助金额:
    $ 25.66万
  • 项目类别:
Analyzing the behavior and interpreting the results of gene based tests of rare v
分析稀有病毒的行为并解释基于基因的测试结果
  • 批准号:
    8367623
  • 财政年份:
    2012
  • 资助金额:
    $ 25.66万
  • 项目类别:
Analyzing the behavior and interpreting the results of gene based tests of rare variant association
分析罕见变异关联的行为并解释基于基因的测试结果
  • 批准号:
    9813293
  • 财政年份:
    2012
  • 资助金额:
    $ 25.66万
  • 项目类别:
Evaluating the Cost Effectiveness of Alternative Sample Designs for Genetic Assoc
评估遗传关联替代样本设计的成本效益
  • 批准号:
    7841342
  • 财政年份:
    2009
  • 资助金额:
    $ 25.66万
  • 项目类别:
Evaluating the Cost Effectiveness of Alternative Sample Designs for Genetic Assoc
评估遗传关联替代样本设计的成本效益
  • 批准号:
    8264409
  • 财政年份:
    2008
  • 资助金额:
    $ 25.66万
  • 项目类别:
Evaluating the Cost Effectiveness of Alternative Sample Designs for Genetic Assoc
评估遗传关联替代样本设计的成本效益
  • 批准号:
    7363067
  • 财政年份:
    2008
  • 资助金额:
    $ 25.66万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.66万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了