Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease

结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法

基本信息

  • 批准号:
    10254376
  • 负责人:
  • 金额:
    $ 48.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary In 2018, an estimated 5.7 million people have Alzheimer's Disease (AD) or a related dementia in the U.S., with related healthcare costs of ~$277 billion1. However, there is no cure yet for AD. One major challenge is that the complicated pathogenesis of AD remains unclear, though >42 genes/loci have been associated with AD2,3. These genes are not actionable or druggable yet for AD management2. Over 240 drugs were tested in clinical trials but no new drugs have been approved for AD since 20031,4. The failure of these drugs is likely, in part, due to the limited efficacy of single agents to treat AD that is a genetically complex, multifactorial disease2, i.e., robust molecular signaling crosstalks among multi-pathways2,5,6,7,8,9, as well as complicated niche factors, e.g., oxidative stress10,11,12,13, and inflammation14,15,16, leading to neuron de-generation. Therefore, combination therapies eliminating these niche factors, and disrupting the dysfunctional signaling pathways and cross-talks, can be more effective than single agents for in AD patients. The goal of this study is to fill the gap of accelerating repositioning of combination therapies for AD using following novel genomics and symptoms data-driven models seamlessly integrating well designed iPSC Aβ AD models. The Washington University Charles F. and Joanne Knight Alzheimer's Disease Research Center (Knight-ADRC), has generated comprehensive omics data for a large group of AD samples. We propose to (in Aim 1) uncover core signaling pathways and crosstalks of ApoE4 genotype-specific AD subtypes via a novel signaling convergence network model, and consequently to discover synergistic Signaling Network Disruption drug combinations (SNDdc) via novel drug prediction models integrating heterogenous pharmacogenomics datasets. On the other hand, we propose to (in Aim 2) discover potential Neuron Protective drug combinations (NPdc) using electronic health records (EHR), available in BJC HealthCare system (includes 14 academic and community hospitals in Missouri and Illinois), of patients with brain injury diseases, especially Traumatic Brain Injury (TBI), via a novel high-order poly-pharmacy efficacy and safety model. We hypothesize that acute brain damage in TBI will share the aforementioned key AD-related niche factors. Also because TBI patients often require multiple drugs daily (high-order poly-pharmacy use), we propose that TBI provides an appropriate model to study synergy and interactions of combination therapies that can ameliorate acute brain injury, and thus suggest potentially neuron protective combinations. Combinations in SNDdc and NPdc provide candidates for novel and effective AD treatment. To filter the false positives, we will (in Aim 3) utilize pooled CRISPR functional genomics and iPSC neurodegeneration model to identify key signaling genes, and validate combination therapies with ApoE4 genotype-specific iPSC Aβ models. Our new models represent a potential breakthrough in AD combination therapies discovery.
项目摘要 2018年,美国估计有570万人患有阿尔茨海默病(AD)或相关痴呆症,与 相关医疗费用约为2770亿美元1。然而,目前还没有治愈AD的方法。一个主要的挑战是, AD的复杂发病机制仍不清楚,尽管>42个基因/位点与AD相关2,3。 这些基因对于AD管理而言尚不可操作或可药物化2。240多个药物在临床试验 试验,但自2003年以来没有新药被批准用于AD 1,4。这些药物的失败很可能,部分原因是, 由于单一药物治疗AD的疗效有限,AD是一种遗传复杂的多因素疾病2,即, 多途径之间的强分子信号传导串扰2,5,6,7,8,9,以及复杂的生态位因素,例如, 氧化应激10,11,12,13和炎症14,15,16,导致神经元退化。因此,组合 消除这些利基因素的治疗,并破坏功能失调的信号通路和串扰, 可能比单药治疗AD患者更有效。 本研究的目的是填补加速AD联合治疗重新定位的差距, 遵循新的基因组学和症状数据驱动模型,无缝整合精心设计的iPSC Aβ AD 模型华盛顿大学的查尔斯·F. Joanne Knight阿尔茨海默病研究中心 (Knight-ADRC)已经为一大组AD样品生成了全面的组学数据。我们建议(在 目的1)通过一种新的方法,揭示ApoE 4基因型特异性AD亚型的核心信号通路和串扰。 信令融合网络模型,从而发现协同信令网络中断 通过整合异质性药物基因组学的新型药物预测模型的药物组合(SNDdc) 数据集。另一方面,我们建议(在目标2中)发现潜在的神经元保护药物组合 (NPdc)使用电子健康记录(EHR),可在BJC医疗保健系统(包括14个学术和 密苏里州和伊利诺斯州的社区医院),治疗脑损伤疾病,尤其是脑外伤患者 损伤(TBI),通过一种新的高阶多药疗效和安全性模型。我们假设急性脑损伤 TBI中的损伤将共享上述关键的AD相关利基因素。此外,由于TBI患者经常 每天需要多种药物(高阶多药房使用),我们建议TBI提供适当的 研究可改善急性脑损伤的联合疗法的协同作用和相互作用的模型,以及 从而提示潜在的神经元保护组合。SNDdc和NPdc的组合提供了 新的和有效的AD治疗的候选人。为了过滤假阳性,我们将(在目标3中)使用合并的 CRISPR功能基因组学和iPSC神经退行性变模型,以识别关键信号传导基因,并验证 与ApoE 4基因型特异性iPSC Aβ模型的联合治疗。我们的新车型代表了 AD联合治疗发现的潜在突破。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fuhai Li其他文献

Fuhai Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fuhai Li', 18)}}的其他基金

AI models of multi-omic data integration for ming longevity core signaling pathways
长寿核心信号通路多组学数据整合的人工智能模型
  • 批准号:
    10745189
  • 财政年份:
    2023
  • 资助金额:
    $ 48.61万
  • 项目类别:
Modeling and targeting tumor-immune signaling interactions in tumor microenvironment
肿瘤微环境中肿瘤免疫信号相互作用的建模和靶向
  • 批准号:
    10659993
  • 财政年份:
    2023
  • 资助金额:
    $ 48.61万
  • 项目类别:
Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease
结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法
  • 批准号:
    10228346
  • 财政年份:
    2020
  • 资助金额:
    $ 48.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了