Modeling and targeting tumor-immune signaling interactions in tumor microenvironment
肿瘤微环境中肿瘤免疫信号相互作用的建模和靶向
基本信息
- 批准号:10659993
- 负责人:
- 金额:$ 35.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-16 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalArtificial IntelligenceAtlasesBiological AssayCRISPR libraryCellsChemoresistanceCoculture TechniquesCommunicationCommunitiesComplexDataData SetDevelopmentDiagnosisDiseaseDrug CombinationsFeedbackFibroblastsGeneticGenetic TranscriptionHeterogeneityHumanImmuneImmune signalingImmunotherapyIn VitroIndividualKnock-outKnowledgeMalignant NeoplasmsMeasurableMeasuresModelingMolecular TargetMusNeoplasm MetastasisPancreatic Ductal AdenocarcinomaPatientsPharmaceutical PreparationsPlayProcessProliferatingResearchResourcesRoleSignal PathwaySignal TransductionSystems BiologyTechnologyTimeTrainingTumor TissueTumor-Associated ProcessTumor-associated macrophagesValidationangiogenesiscancer geneticscell typeeffective therapyimprovedin vivomigrationmouse modelneoplastic cellnew therapeutic targetnovelpancreatic ductal adenocarcinoma modelresponserestraintsingle-cell RNA sequencingsuccesstargeted treatmenttooltreatment responsetumortumor growthtumor microenvironmenttumor progression
项目摘要
Project Summary
Tumor-stroma/immune cell signaling communications within the tumor microenvironment (TME) play important
roles in tumor development and responses to targeted and immunotherapies. However, our knowledge of
complex signaling communications within TME, and their roles in tumor development, drug and
immunotherapy response is limited. Effective molecular targets are still missing that can inhibit the tumor-
stroma signaling communications. Single cell RNA sequencing (scRNA-seq) has been being a powerful
technology to capture transcriptional changes in individual tumor, stroma, immune cells within TME. While
scRNA-seq datasets of human cancer are rapidly growing in number, which is leading to many basic and
translational discoveries, the study of dynamic tumor-stroma signaling communications is limited. Limiting
factors include: 1) static and single time-point snapshots of the complex interactions within the TME, and 2)
difficulty in perturbing a large number of related signaling targets; and measuring corresponding functional
effects to these perturbations in mouse or tumor tissues (to identify novel therapeutic targets and treatments).
To resolve these challenges, in this study, we propose to combine the cutting-edge technologies, including
novel artificial intelligence (AI) models, scRNA-seq, crispr-based single or double knockouts (CDKOs), 3D
tumor-CAF-TAM co-culture assays, and genetic mouse models, in a systems biology manner. Specifically, (in
Aim 1), we will develop novel network AI models using valuable large sets of scRNA-seq data of PDAC human
tumors at WashU to identify static core tumor-CAF-TAM interaction (TCTi) signaling networks (multi-cell intra-
/inter-cellular signaling networks of TCTi); and an initial set of anti-TCTi targets. In Aim 2, we will further
develop another network AI model (M-Step) to infer the better anti-TCTi targets using the functional validation
feedbacks in Aim 3; and predict synergistic drug combinations (inhibiting multiple key anti-TCTi targets). In Aim
3, the predicted targets and drugs will be efficiently evaluated using scalable 3D Tumor-CAF-TAM co-culture
assays and crispr-based knockouts (E-step) with 3 measurable metrics, i.e., tumor proliferation, migration,
angiogenesis. The M-step (modeling) and E-step (validation) forms an E-M process to identify key anti-
TCTi targets and drugs iteratively. We will apply these AI models in Pancreatic ductal adenocarcinoma
(PDAC) because 1) there have been very limited responses to immunotherapy; 2) no effective treatment; 3)
nearly all patients will develop chemo-resistant and metastatic tumors within 2 years of diagnosis. Also
(feasibility), 4) we have a strong cross-disciplinary team studying the PDAC TME (supported by NCI SPORE
and human tumor atlas network (HTAN)), with the valuable state-of-the-art resources. The success of this
study will identify novel anti-tumor-TAM-CAF targets and drug cocktails for PDAC treatment. The AI models,
supporting the novel E-M systems biology, can be applied to other cancers and diseases.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fuhai Li其他文献
Fuhai Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fuhai Li', 18)}}的其他基金
AI models of multi-omic data integration for ming longevity core signaling pathways
长寿核心信号通路多组学数据整合的人工智能模型
- 批准号:
10745189 - 财政年份:2023
- 资助金额:
$ 35.06万 - 项目类别:
Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease
结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法
- 批准号:
10228346 - 财政年份:2020
- 资助金额:
$ 35.06万 - 项目类别:
Combine Genomics and Symptoms Data Driven Models to Discover Synergistic Combinatory Therapies for Alzheimer's Disease
结合基因组学和症状数据驱动模型来发现阿尔茨海默病的协同组合疗法
- 批准号:
10254376 - 财政年份:2020
- 资助金额:
$ 35.06万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 35.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




