The Interplay of Electric Potential and Morphology of Biomembranes
生物膜电势与形态的相互作用
基本信息
- 批准号:10254345
- 负责人:
- 金额:$ 30.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsBiologicalBiomimeticsBrainCell CommunicationCell membraneCellsChargeComplexComputing MethodologiesCouplingElectricityEmbryonic DevelopmentExhibitsGenerationsHealthHodgkin-Huxley modelHumanInstructionIon ChannelIon TransportLiquid substanceMathematicsMechanicsMembraneMembrane LipidsMembrane MicrodomainsMembrane PotentialsMethodologyModelingMorphologyMotionMuscleNerveOutcomePhase TransitionPhysicsPlayResearchRestRoleShapesSignal TransductionSpectrum AnalysisStimulusStressStretchingSystemTechniquesTheoretical Studiesbasebioelectricitycancer therapycell behaviorelectric fieldelectrical potentialexperimental studyhealingmathematical modelmembrane modelmigrationneuronal excitabilitynew therapeutic targetnovelnovel therapeuticsresponsesubmicrontheoriestumor progressionunilamellar vesiclevirtualvoltagewound healing
项目摘要
An electric potential difference across the plasma membrane is common to all living cells and is crucial for
the generation of action potentials for cell-to-cell communication. Beyond excitable nerve and muscle,
bioelectric signals conjugated with the transmembrane potential control many cell behaviors such as
migration, orientation, and proliferation, which play crucial role in embryogenesis, would healing, and cancer
progression. The mechanisms of cellular responses to electric stimuli are virtually unknown. An electricitycentered view, epitomized by the Hodgkin-Huxley model, focuses on the voltage-dependent ion channels.
However, in recent years membrane mechanics is emerging as a potentially important player: membrane
deformations are detected to co-propagate with action potentials, several ion channels have been found to
be both voltage-gated and mechanosensitive, and lipid rafts have been implicated as electrosensors.
Assessment of the relevance of these membrane-related effects in bioelectric phenomena requires
fundamental understanding of the coupling between membrane morphology, stresses, and voltage, which is
limited.
To fill this void, the team proposes a combined theoretical and experimental study of biomimetic
membranes with transmembrane potential induced by an externally applied electric fields. Specifically, the
project seeks to determine how an electric potential elicits membrane responses such a stretching or
compression, curvature, and phase transitions, and vice versa, how changes in the membrane morphology
modulate the transmembrane potential. Mathematically, these are challenging free boundary problems
exhibiting complex dynamics. Continuum theory will be used to model the ions transport, motion of a charged
lipid membrane interface and the surrounding liquids. A computational method is proposed to solve these
complicated transient three-dimensional free-boundary problems. Experimentally, using giant unilamellar
vesicles (GUVs) as a model membrane system the PI will develop novel methodologies to probe the dynamic
coupling between shape and voltage of biomembranes. The techniques will be based on the flickering
spectroscopy (analysis of the thermally driven micron- and sub-micron membrane undulations) and GUV
deformation in applied electric fields. Membranes with broad range of compositions mimicking biological
membranes will be investigated. The experimental results will inform the mathematical models in terms of
relevant physics and material parameters, and vice versa, the theories will guide the experiments.
跨质膜的电势差对所有活细胞都是常见的,并且对
细胞间通讯的动作电位的产生。在兴奋的神经和肌肉之外,
与跨膜电位共轭的生物电信号控制着许多细胞行为,如
迁移、定向和增殖,在胚胎发育中起着关键作用,会愈合和癌症
进步。细胞对电刺激的反应机制几乎是未知的。以Hodgkin-Huxley模型为代表的以电子为中心的观点聚焦于电压相关的离子通道。
然而,近年来,膜力学正在成为一个潜在的重要参与者:膜
形变被检测到与动作电位共同传播,已发现几个离子通道
既是电压门控的,又是机械敏感的,脂筏被认为是电子传感器。
评估这些膜相关效应在生物电现象中的相关性需要
对膜形态、应力和电压之间的耦合有基本的了解,这是
有限的。
为了填补这一空白,该团队提出了一项仿生学的理论和实验相结合的研究
在外加电场作用下产生跨膜电位的膜。具体地说,
该项目试图确定电势如何引起薄膜响应,如拉伸或
压缩、曲率和相变,反之亦然,膜的形态如何变化
调节跨膜电位。从数学上讲,这些都是具有挑战性的自由边界问题
表现出复杂的动态。连续介质理论将被用来模拟带电离子的输运、运动
脂膜与周围液体的界面。提出了一种求解这些问题的计算方法
复杂的瞬变三维自由边界问题。实验中,使用巨大的单层膜
囊泡(GUV)作为一种模型膜系统,PI将发展新的方法学来探索动力学
生物膜的形状和电压之间的耦合。这些技术将基于闪烁
光谱学(热驱动微米和亚微米薄膜波动的分析)和GUV
外加电场中的变形。具有广泛组成范围的模拟生物膜
将对膜进行研究。实验结果将为数学模型提供如下方面的信息
相关的物理和材料参数,反之亦然,这些理论将指导实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petia M Vlahovska其他文献
Petia M Vlahovska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petia M Vlahovska', 18)}}的其他基金
The Interplay of Electric Potential and Morphology of Biomembranes - Supplement
生物膜电势与形态的相互作用 - 补充
- 批准号:
10581416 - 财政年份:2020
- 资助金额:
$ 30.68万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 30.68万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 30.68万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 30.68万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 30.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 30.68万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 30.68万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 30.68万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 30.68万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 30.68万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 30.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)