A Human Factors and Systems Engineering Approach for Understanding the Diagnostic Process and Associated Safety Hazards in the Emergency Department
用于了解急诊科诊断过程和相关安全隐患的人为因素和系统工程方法
基本信息
- 批准号:10252807
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2023-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Diagnostic errors are common, deadly, and costly. Twelve million Americans annually experience diagnostic
error in ambulatory care, including in Emergency Department (EDs), over half of these with potential for harm.
ED clinical practice is especially prone to diagnostic error as a sociotechnical work system that is fast-paced,
high-stakes, highly adaptive and complex. The 2016 National Academy of Medicine (NAM) report was an
urgent call for more research regarding diagnostic safety, making particular reference to the ED. ED diagnosis
is cognitively-intense work, distributed across team members who may or may not be co-located. There is very
limited understanding of the salient `real-time' details of the ED diagnostic process and associated
performance shaping factors on the work system. Without structured in-depth analysis of ED diagnosis
occurring as part of `real-time ED work,' that is “work-as-done,” we will continue the struggle with the design of
effective, sustainable interventions to improve diagnostic safety. Accordingly, we are proposing a 3-year, multi-
site, multi-method field study in the ED based on a sociotechnical systems approach and a macrocognition
framework, which is the study of cognitive tasks that characterize how people think in natural settings. We
have 3 specific aims: (1) AIM 1. To understand provider (physician and advanced practice provider) work
involved in ED diagnosis and identify associated performance shaping factors. (2) AIM 2. To understand
collaborative (team-oriented) work involved in ED diagnosis and identify associated performance shaping
factors. (3) AIM 3. To conduct a proactive risk assessment of the diagnostic process in the ED.
AIM 1 and AIM 2 will be achieved by conducting in-depth qualitative studies using a variety of data
collection methods (observations, interviews) and cognitive task analyses techniques. Data analysis will
produce a range of outputs such as process maps, macrocognitive and procedural tasks involved in diagnosis,
information flow diagrams, role network graphs, among others. AIM 3 will use two complementary proactive
risk assessment methods to assess failure modes and performance shaping factors and to identify possible
interventions to improve ED diagnostic safety: (1) Health Care Failure Mode and Effect Analysis (HFMEA); (2)
Functional Resonance Analysis Method (FRAM) Based “What-if” Risk Analysis. Additionally, we will develop a
research methods compendium/guide for those interested in conducting similar research on diagnostic safety.
The study will be conducted in 3 different EDs (urban, suburban, rural) that serve patients from 6 AHRQ priority
population groups. The research team is interdisciplinary, composed of internationally known experts in patient
safety, human factors, systems engineering, cognitive psychology, communication, emergency medicine, and
nursing. The study is innovative due to its lens on ED diagnostic process as a whole, its use of human factors-
based conceptual approaches, its investigation of the ED team's role in the diagnosis, and its use of a variety
of cognitive task analysis techniques and proactive risk assessment methods.
诊断错误是常见的、致命的和昂贵的。每年有1200万美国人接受诊断
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AYSE PINAR GURSES其他文献
AYSE PINAR GURSES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AYSE PINAR GURSES', 18)}}的其他基金
Resilient EMS PSLL: Using a Systems Engineering Approach to Enhance EMS Cognitive Work and Safety for Older Adults During Prehospital Care.
弹性 EMS PSLL:使用系统工程方法来增强院前护理期间老年人的 EMS 认知工作和安全。
- 批准号:
10769353 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
EHR usability and usefulness, perceived missed nursing care and medication errors in critical care
EHR 可用性和实用性、感知的错过护理和重症监护中的用药错误
- 批准号:
10670851 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
EHR usability and usefulness, perceived missed nursing care and medication errors in critical care
EHR 可用性和实用性、感知的错过护理和重症监护中的用药错误
- 批准号:
10503493 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
A Human Factors and Systems Engineering Approach for Understanding the Diagnostic Process and Associated Safety Hazards in the Emergency Department
用于了解急诊科诊断过程和相关安全隐患的人为因素和系统工程方法
- 批准号:
10016288 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Care Transitions and Teamwork in Pediatric Trauma: Implications for HIT Design
儿科创伤中的护理转变和团队合作:对 HIT 设计的影响
- 批准号:
9258410 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Care Transitions and Teamwork in Pediatric Trauma: Implications for HIT Design
儿科创伤中的护理转变和团队合作:对 HIT 设计的影响
- 批准号:
9101954 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Improving the Safety of Care Transitions for Cardiac Surgery Patients
提高心脏手术患者护理过渡的安全性
- 批准号:
8259043 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Improving the Safety of Care Transitions for Cardiac Surgery Patients
提高心脏手术患者护理过渡的安全性
- 批准号:
8474725 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Improving the Safety of Care Transitions for Cardiac Surgery Patients
提高心脏手术患者护理过渡的安全性
- 批准号:
7870683 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Improving the Safety of Care Transitions for Cardiac Surgery Patients
提高心脏手术患者护理过渡的安全性
- 批准号:
8662775 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
相似国自然基金
生长素响应因子(Auxin Response Factors)在拟南芥雄配子发育中的功能研究
- 批准号:31970520
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
Travel: NSF Student Travel Grant for the Doctoral Consortium at the ACM Conference on Human Factors in Computing Systems (CHI 2024)
旅行:为参加 ACM 计算系统人为因素会议 (CHI 2024) 的博士联盟提供 NSF 学生旅行补助金
- 批准号:
2412553 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Applying Human Factors Science, Design Thinking and Systems Engineering to Mitigate Threats to Neonates Undergoing Resuscitation and Stabilization
应用人因科学、设计思维和系统工程来减轻对接受复苏和稳定的新生儿的威胁
- 批准号:
10708815 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Applying Human Factors Science, Design Thinking and Systems Engineering to Mitigate Threats to Neonates Undergoing Resuscitation and Stabilization
应用人因科学、设计思维和系统工程来减轻对接受复苏和稳定的新生儿的威胁
- 批准号:
10555773 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Using virtual reality to optimize human factors of informational systems for industrial machinery
利用虚拟现实优化工业机械信息系统的人为因素
- 批准号:
RGPIN-2017-06076 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Human Factors in Simulations of Operations Systems - A Sociotechnical Approach
操作系统模拟中的人为因素 - 社会技术方法
- 批准号:
RGPIN-2018-05956 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Using virtual reality to optimize human factors of informational systems for industrial machinery
利用虚拟现实优化工业机械信息系统的人为因素
- 批准号:
RGPIN-2017-06076 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Human Factors in Simulations of Operations Systems - A Sociotechnical Approach
操作系统模拟中的人为因素 - 社会技术方法
- 批准号:
RGPIN-2018-05956 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Human Factors in Simulations of Operations Systems - A Sociotechnical Approach
操作系统模拟中的人为因素 - 社会技术方法
- 批准号:
RGPIN-2018-05956 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Using virtual reality to optimize human factors of informational systems for industrial machinery
利用虚拟现实优化工业机械信息系统的人为因素
- 批准号:
RGPIN-2017-06076 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual
Using virtual reality to optimize human factors of informational systems for industrial machinery
利用虚拟现实优化工业机械信息系统的人为因素
- 批准号:
RGPIN-2017-06076 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Discovery Grants Program - Individual