Stochastic Modeling of Tissue Injury, Edema and Targeted Drug Delivery

组织损伤、水肿和靶向药物输送的随机模型

基本信息

  • 批准号:
    10252849
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-20 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Program Director/Principal Investigator (Last, First, Middle): Masud, Arif Targeted drug delivery using a nano-sized carrier is a multi-faceted problem that aims at achieving maximum efficacy with minimum dose of medicine. This problem gets compounded in biological systems due to their inherent uncertainty and spatiotemporal inhomogeneity. The sources of uncertainty are both aleatory and epistemic, stemming from natural variability, information uncertainty, and modeling approximations at multiple levels. Information uncertainty arises from sparse and imprecise data on hydrodynamic effects and drug transport via blood flow, propensity of the targeted tissue to absorb the drug, clinical measurement and imaging data .,processing errors, and qualitative information. Model uncertainty arises due to unknown model parameters, model form assumptions, and solution approximation errors. Unlike deterministic analysis typically employed in engineered systems, modeling and analysis methods for biological systems need to be grounded in stochastic methods and associated robust numerical formulations. These models can then be employed to carry out simulation-based statistical analysis of the effect of the various combinations of the modeled parameters thereby establishing risk informed decision guidelines. We hypothesize that size and shape of drug carriers play a significant role in increasing the number of drug carriers reaching targeted, injured tissue and, in turn, drugs available for treatments. A mathematical framework for stochastic models and associated computer code will be developed to simulate an ischemic vascular injury and subsequent edema in perivascular tissue and optimize geometry of drug carriers with minimal trials-and-error. We will examine the hypothesis by validating the developed mathematical model with drug carriers both in vitro and in vivo with a two-pronged approach. We will develop a variational framework for coupling stochastic PDEs for drug delivery and reduce dimensionality of the stochastic system via a novel fine-scale modeling concept. The mathematical framework will be validated via experimentation of drug carrier transport to targeted tissue using in vitro microfluidic and in vivo mouse models of the acute limb ischemia. The in vivo mouse model will generate data for the development of the mathematical model and for its calibration and validation. The new method and the computer codes will be applied to optimize adhesion and transendothelial migration of drug carriers to a target vascular wall, accounting for optimal particle size and shape. These studies will be of direct relevance to improving quality of patient care and health.
项目负责人/主要研究者(最后,第一,中间):Masud,Arif 使用纳米尺寸载体的靶向药物递送是一个多方面的问题,其旨在实现 以最小的药物剂量获得最大的疗效。这个问题在生物系统中变得更加复杂 由于其固有的不确定性和时空不均匀性。不确定性的来源有两个 偶然性和认识性,源于自然变异性、信息不确定性和建模 多层次的近似。信息的不确定性来自以下方面的稀疏和不精确的数据: 流体动力学效应和通过血流的药物运输,靶组织吸收药物的倾向, 药物、临床测量和成像数据。处理错误和定性信息。模型 由于模型参数、模型形式假设和解的近似未知,会产生不确定性 错误.与工程系统中通常采用的确定性分析不同,建模和分析 生物系统的方法需要建立在随机方法和相关的鲁棒性基础上。 数值公式然后,这些模型可以用于进行基于模拟的统计分析。 分析建模参数的各种组合的影响,从而确定风险 知情决策指南。 我们推测,药物载体的大小和形状在增加细胞数量方面起着重要作用。 药物载体到达靶向的、受损的组织,并且反过来,药物可用于治疗。数学 随机模型的框架和相关的计算机代码将被开发,以模拟缺血性 血管损伤和随后的血管周围组织水肿,并优化药物载体的几何形状, 最少的试错我们将通过验证开发的数学模型来检验假设 与药物载体在体外和体内双管齐下的方法。我们将开发一种变分的 用于药物递送的耦合随机偏微分方程的框架和降低随机偏微分方程的维数 系统通过一个新的精细尺度建模的概念。数学框架将通过以下方式进行验证: 使用体外微流体和体内小鼠的药物载体转运到靶组织的实验 急性肢体缺血模型。体内小鼠模型将产生用于开发 数学模型及其校准和验证。新的方法和计算机代码将是 应用于优化药物载体对靶血管壁的粘附和跨内皮迁移, 考虑到最佳的颗粒尺寸和形状。这些研究将与提高质量直接相关 病人的护理和健康。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weakly imposed boundary conditions for shear-rate dependent non-Newtonian fluids: application to cardiovascular flows.
A Unified Determinant-Preserving Formulation for Compressible/Incompressible Finite Viscoelasticity.
可压缩/不可压缩有限粘弹性的统一行列式保持公式。
Variational coupling of non-matching discretizations across finitely deforming fluid-structure interfaces.
有限变形流体-结构界面上不匹配离散的变分耦合。
Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
  • DOI:
    10.1007/s00466-023-02334-7
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
  • 通讯作者:
Physics-Constrained Data-Driven Variational Method for Discrepancy Modeling.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARIF MASUD其他文献

ARIF MASUD的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARIF MASUD', 18)}}的其他基金

Stochastic Modeling of Tissue Injury, Edema and Targeted Drug Delivery
组织损伤、水肿和靶向药物输送的随机模型
  • 批准号:
    9901734
  • 财政年份:
    2019
  • 资助金额:
    $ 19万
  • 项目类别:
Stochastic Modeling of Tissue Injury, Edema and Targeted Drug Delivery
组织损伤、水肿和靶向药物输送的随机模型
  • 批准号:
    10021681
  • 财政年份:
    2019
  • 资助金额:
    $ 19万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了