High performance PET Detector Module for Human Brain Imaging

用于人脑成像的高性能 PET 探测器模块

基本信息

  • 批准号:
    10254284
  • 负责人:
  • 金额:
    $ 23.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-16 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary / Abstract This proposal is in response to PA 18-484. In the BRAIN 2025 Report, PET (positron emission tomography) is identified as “the best means to translate studies of neurotransmitters, receptors, and neuromodulators to humans.” However dynamic assessment of receptor occupancy and metabolism is hindered by the spatial resolution and sensitivity of even the most modern of clinically available PET scanners. To address this challenge, we propose a next generation PET detector with a highly innovative design: a detector module with a layered scintillator structure and a side readout configuration. The crystal slabs in the module are stacked along the depth direction and are optically separated by reflective films. The scintillation light created in each layer is measured by photodetectors located on the four sides of the crystal. Compared with traditional PET detectors, which contain pixelated crystal arrays, the new design has the following advantages: (1) The layered structure provides depth of interaction (DOI) information such that a smaller diameter detector ring can be used without increasing parallax error, increasing sensitivity while lowering costs. (2) The four-sided readout method improves the energy resolution of the system with increased scintillation light collection efficiency by reducing light loss due to total internal reflection. (3) Sub millimeter spatial resolution is achievable without using very small pitch crystal arrays, since the interaction location in each crystal layer is determined via machine learning- based decoding of the light distribution collected on the four crystal sides. Therefore the production cost of the crystals is reduced. (4) Since the interaction location and energy resolution for each layer are determined independently, the system sensitivity can be increased by stacking more layers in the module without affecting the spatial and energy resolution of the system. (5) For side readout setup, a larger ratio of cross-sectional area to length requires fewer photodetectors to cover all four sides of the module; this reduces photodetector cost. The first four points above have been demonstrated in preliminary studies using a small, prototype module. We propose to build a large scale detector module with this new design to verify the fifth advantage, and to study the effect of detector size on the first four. The outcome of this proposal will be two DOI enabled detector modules with excellent spatial resolution (~1 mm) and energy resolution (~10%), as well as good timing resolution (~400 ps), and DOI resolution (~ 3 mm) and high system sensitivity. A full characterization study for the two modules and imaging studies for both the Derenzo and Hoffman brain phantoms will address the current limitations of human brain PET scanners, and will serve as the foundation for a new dynamic PET scanner for neuroimaging.
项目摘要/摘要 这项建议是对PA 18-484的回应。在大脑2025年报告中,正电子发射断层扫描(PET)是 被认为是将神经递质、受体和神经调节剂的研究转化为 人类。“然而,受体占有率和新陈代谢的动态评估受到空间因素的阻碍 即使是最现代的临床上可用的PET扫描仪,其分辨率和灵敏度也很高。要解决这个问题 挑战,我们提出了一种具有高度创新设计的下一代PET探测器:具有 分层闪烁体结构和侧面读出配置。模块中的水晶片堆叠在一起 沿深度方向,并由反射膜光学分隔。在每一颗行星上产生的闪烁光 由位于晶体四边的光电探测器测量晶体的厚度。与传统聚酯相比 探测器中包含像素化晶体阵列,新设计具有以下优点:(1)分层 结构提供相互作用深度(DOI)信息,使得可以使用较小直径的探测器环 在不增加视差误差的情况下,在降低成本的同时提高灵敏度。(2)四面读数法 提高了系统的能量分辨率,增加了闪烁光收集效率,通过减少 由于全内反射造成的光损失。(3)亚毫米级空间分辨率是可以实现的,而不需要使用非常 小间距晶体阵列,因为每个晶层中的相互作用位置是通过机器学习来确定的。 基于对在四个晶面上收集的光分布的解码。因此,该产品的生产成本 晶体减少了。(4)由于确定了各层的相互作用位置和能量分辨率 独立地,可以通过在模块中堆叠更多层来提高系统灵敏度,而不会影响 系统的空间和能量分辨率。(5)对于侧面读出设置,横截面面积比更大 TO长度需要更少的光电探测器来覆盖模块的所有四个侧面;这降低了光电探测器的成本。 上述前四点已在使用小型原型模块进行的初步研究中进行了演示。我们 提出了用这种新的设计来构建一个大规模的探测器模块,以验证第五个优势,并进行了研究 探测器尺寸对前四个参数的影响。该提议的结果将是两个启用DOI的探测器模块 具有出色的空间分辨率(~1 mm)和能量分辨率(~10%),以及良好的时间分辨率(~400 Ps)、DOI分辨率(~3 mm)和高系统灵敏度。这两个模块的完整特性研究 对DeRenzo和Hoffman大脑模型的成像研究将解决目前 人脑PET扫描仪,并将作为新的用于神经成像的动态PET扫描仪的基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peng Peng其他文献

Restriction or acceleration: Investigation on the remelting/resolidification process during Sn-Ni peritectic solidification in a temperature gradient
限制或加速:温度梯度下Sn-Ni包晶凝固过程中重熔/再凝固过程的研究
Determination of solid-liquid interfacial energy of Ni3Sn2 phase by grain boundary groove method in a temperature gradient
温度梯度下晶界槽法测定Ni3Sn2相固液界面能
Analysis on the growth and growth-dependent microhardness of Ni3Sn4 intermetallic compound phase in directionally solidified Sn-Ni alloy
定向凝固Sn-Ni合金中Ni3Sn4金属间化合物相的生长及生长相关显微硬度分析

Peng Peng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peng Peng', 18)}}的其他基金

High performance PET Detector Module for Human Brain Imaging
用于人脑成像的高性能 PET 探测器模块
  • 批准号:
    10017238
  • 财政年份:
    2019
  • 资助金额:
    $ 23.75万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 23.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了