Integrative Approaches for Identifying Causal Gene-Cell Type Pairs of Complex Disease
识别复杂疾病的致病基因-细胞类型对的综合方法
基本信息
- 批准号:10261463
- 负责人:
- 金额:$ 42.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAutomobile DrivingBiologicalCellsComplexDNA sequencingDataDevelopmentDiagnosticDiseaseEtiologyFoundationsGenesGenomicsInvestigationMapsMasksMethodsPatientsPopulationProteomeResearchSignal TransductionTissuesTranslatingcausal variantcell typecohortdesigndiagnostic biomarkerdisease phenotypeempoweredepigenomeepigenomicsgene discoverygenetic variantgenome wide association studyhuman diseaseinnovationlarge scale datamolecular scalemultiple omicsnovel diagnosticsprogramstranscriptometranscriptome sequencingtranscriptomicstreatment strategy
项目摘要
Project Summary
Identifying causal genes and cell types underlying disease etiologies are essential for designing targeted
diagnostic and treatment strategies. Genome-wide association study (GWAS), DNA-sequencing, and RNA-
sequencing studies have identified potentially causal genes in multiple human diseases. While these methods
provide disease-associated “gene lists”, they suffer from major shortcomings given the lack of cell-type
information. First, each tissue is composed of multiple cell types with diverse contributions to disease
phenotypes, and thus studies using bulk-tissue data alone result in the ambiguity of the causal cell populations.
Secondly, causal gene signals from rare cell types may be masked in bulk tissues. Finally, understanding
which genes are perturbed in which cell types is required for designing downstream functional studies. To
identify the gene-cell pairs driving human disease, systematic approaches to integrate patient-cohort data with
cell-type-specific data are urgently needed. My research program aims to identify causal genes and cell types
driving human diseases using multi-omics approaches. Our central hypothesis is that dysregulated genes
mapped to specific cell types drive disease etiologies. Previously, we developed algorithms that integrate
large-scale data of common and rare genomic variants, epigenomes, transcriptomes, and proteomes to identify
causal genes in tissue affecting specific cell types, providing strong biological and technical foundations for the
project. Further, the proposed approaches are empowered by rapidly-expanding cell-specific epigenomic and
transcriptomic data using sorted cell populations or single-cell profiling. In the next 5-year period, we will
specifically develop algorithms that integrate genomic findings from patient cohorts with cell-specific
transcriptomic data, addressing two major questions: (1) What are the gene-cell type pairs contributing to
disease etiologies? (2) How are expressions of disease-associated genes regulated at a single-cell
level? The proposed project will strongly impact the field by discovering gene-cell pairs associated with a wide
range of diseases for downstream investigation. The development will afford new methods to integrate purified
and single-cell transcriptome data to expand on findings from large-scale patient genomic cohorts. In the long
term, the successfully identified gene-cell pairs can be translated into diagnostic markers or treatment targets
of human disease.
项目摘要
确定致病基因和细胞类型的疾病病因是必不可少的设计靶向
诊断和治疗策略。全基因组关联研究(GWAS)、DNA测序和RNA-
测序研究已经确定了多种人类疾病的潜在致病基因。虽然这些方法
提供疾病相关的“基因列表”,由于缺乏细胞类型,它们存在重大缺陷。
信息.首先,每个组织由多种细胞类型组成,对疾病的贡献不同
表型,并因此研究使用散装组织数据单独导致的因果细胞群体的模糊性。
其次,来自罕见细胞类型的致病基因信号可能在大量组织中被掩盖。最后,理解
在设计下游功能研究所需的细胞类型中,哪些基因受到干扰。到
确定驱动人类疾病的基因-细胞对,系统性方法将患者队列数据与
迫切需要细胞类型特异性数据。我的研究项目旨在确定致病基因和细胞类型
使用多组学方法驱动人类疾病。我们的中心假设是失调的基因
映射到特定的细胞类型驱动疾病病因。以前,我们开发的算法,
常见和罕见的基因组变异,表观基因组,转录组和蛋白质组的大规模数据,以确定
组织中的致病基因影响特定的细胞类型,为基因治疗提供了强大的生物学和技术基础。
项目此外,所提出的方法通过快速扩增细胞特异性表观基因组和
使用分选的细胞群体或单细胞谱分析来分析转录组学数据。在未来五年内,我们将
专门开发算法,将来自患者队列的基因组发现与细胞特异性
转录组学数据,解决两个主要问题:(1)基因-细胞类型对有助于什么
疾病病因学?(2)疾病相关基因的表达是如何在单细胞中调节的
级别?拟议的项目将通过发现与广泛的遗传病相关的基因-细胞对来强烈影响该领域。
用于下游调查的疾病范围。这一研究成果将为生物医学领域提供新的方法,
和单细胞转录组数据,以扩大大规模患者基因组队列的发现。从长远
从长远来看,成功鉴定的基因-细胞对可以转化为诊断标记或治疗靶点
人类疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kuan-lin Huang其他文献
Kuan-lin Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kuan-lin Huang', 18)}}的其他基金
Integrative Approaches for Identifying Causal Gene-Cell Type Pairs of Complex Disease
识别复杂疾病的致病基因-细胞类型对的综合方法
- 批准号:
10029020 - 财政年份:2020
- 资助金额:
$ 42.31万 - 项目类别:
Integrative Approaches for Identifying Causal Gene-Cell Type Pairs of Complex Disease
识别复杂疾病的致病基因-细胞类型对的综合方法
- 批准号:
10455549 - 财政年份:2020
- 资助金额:
$ 42.31万 - 项目类别:
Integrative Approaches for Identifying Causal Gene-Cell Type Pairs of Complex Disease
识别复杂疾病的致病基因-细胞类型对的综合方法
- 批准号:
10675476 - 财政年份:2020
- 资助金额:
$ 42.31万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 42.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists