CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
基本信息
- 批准号:10261540
- 负责人:
- 金额:$ 33.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-11 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAnimalsArchitectureAutomobile DrivingBehaviorBehavioralBehavioral ModelBehavioral ParadigmBiological ModelsBipolar DisorderBirdsBrainCapuchin MonkeyChoice BehaviorChronicCognitiveCollaborationsComplexConsequentialismDataDecision MakingDecision TheoryDependenceDimensionsDiseaseFutureHealthHumanImpairmentImplantIndividualIndividual DifferencesInsuranceKnowledgeMachine LearningMammalsMental disordersModelingModernizationMonitorNeuronsOccupationsOutcomePopulationPopulation DynamicsProcessRattusRecording of previous eventsRetirementRewardsSavingsSchizophreniaSiliconStructureTechniquesTestingTrainingWagesWaterWorkbasebehavior measurementbehavioral economicsdynamic systemexpectationexperienceexperimental studyimprovedneural circuitneuropsychiatric disordernovelpreservationrecurrent neural networkrelating to nervous systemreward processingtool
项目摘要
A key computation that all mammals perform is determining the value of different outcomes. People and
animal models evaluate outcomes as gains or losses relative to an internal reference point, likely
reflecting their experience-based expectations. For example, if someone is told they will receive a
particular salary at a new job, but when they start, they find that the salary is substantially less, they will
view that salary (which is a net increase in wealth) as a loss relative to their reference point. Reference
dependence is a consequential, ubiquitous phenomenon, driving decisions about insurance, financial
products, labor, and retirement savings. The proposed work seeks to uncover how large populations of
neurons represent a cognitive variable –the reference point- during value-based decision-making. This
work involves complementary, synergistic interactions between experimentalists and theorists in the labs
of Dr. Christine Constantinople and Dr. Cristina Savin, respectively.
This proposal will develop a novel behavioral paradigm for studying reference dependence in rats,
enabling application of powerful tools to monitor large-scale neural dynamics. High-throughput behavioral
training will generate dozens of trained subjects for experiments in parallel. We will also develop a
behavioral model to quantify key aspects of rats' behavior, including individual differences in behavior
across animals (Aim 1). We will use new silicon probes with high channel counts (“Neuropixels” probes) to
record from populations of neurons in dozens of rats during behavior. Recordings will be obtained from
the orbitofrontal cortex (OFC), a key brain structure implicated in value-based decision-making. We will
develop novel latent dynamics models that will infer the reference point directly from populations of
simultaneously recorded neurons in OFC, without any knowledge of the task or rats' behavior. This model
will also be able to identify aspects of neural dynamics that are common across dozens of rats, and
aspects that are variable across animals, reflecting individual differences in behavior (Aim 2). Finally, we
will use complementary, state-of-the-art machine-learning techniques to train recurrent neural networks
(RNNs) on our behavioral and neural data. This approach will generate concrete hypotheses about the
neural circuit architectures performing reference-dependent subjective valuation in our task (Aim 3).
所有哺乳动物进行的一个关键计算是确定不同结果的值。人,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Marie Constantinople其他文献
Christine Marie Constantinople的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Marie Constantinople', 18)}}的其他基金
Neural circuit mechanisms of arithmetic for economic decision-making
经济决策算法的神经回路机制
- 批准号:
10002804 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
- 批准号:
10675077 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
CRCNS: Inferring reference points from OFC population dynamics
CRCNS:从 OFC 人口动态推断参考点
- 批准号:
10462618 - 财政年份:2020
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9894590 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
10064970 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9816021 - 财政年份:2019
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9353881 - 财政年份:2016
- 资助金额:
$ 33.72万 - 项目类别:
Neural mechanisms of probability estimation during decision-making
决策过程中概率估计的神经机制
- 批准号:
9224202 - 财政年份:2016
- 资助金额:
$ 33.72万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 33.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists