Robust modeling of within- and across-area population dynamics using recurrent neural networks
使用循环神经网络对区域内和跨区域人口动态进行稳健建模
基本信息
- 批准号:10263644
- 负责人:
- 金额:$ 131.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdvanced DevelopmentArchitectureAreaBehaviorBehavioralBrainCalciumCodeCognitiveCommunicationCommunitiesComplexComputer softwareDataData AnalysesData CollectionData SetDevelopmentDocumentationDropsElectrodesForearmImageIndividualInfrastructureLocomotionMediatingMethodsModelingModernizationMonitorMonkeysMotorMotor CortexMovementMuscleNeuronsNonlinear DynamicsOnline SystemsPatternPopulationPopulation DynamicsProcessResearchResearch PersonnelSchemeSensorySensory ProcessSomatosensory CortexSource CodeStructureTestingTimeValidationVariantWorkWristanalytical toolautoencoderbasecloud basedcognitive processdata standardsdata toolsdata visualizationdeep learningdynamic systemflexibilityfrontal lobegrasphigh dimensionalityinformation processinginsightmulti-electrode arraysmultidimensional dataneural network architectureopen sourceopen source toolrecurrent neural networkrelating to nervous systemsomatosensorystemtool
项目摘要
Over the past several decades, the ability to record from large populations of neurons (e.g., multi-electrode
arrays, neuropixels, calcium imaging) has increased exponentially, promising new avenues for understanding
the brain. These data have the promise to provide a qualitatively different view of activity within and across brain
areas than was previously possible, but the effort will require the development of advanced analytical tools. One
natural framework is provided by the tools of dynamical systems, which offer the means to uncover coordinated
time-varying activation patterns expressed across an interconnected network of recorded neurons, and to
characterize how these patterns relate to behavior. This framework has provided fundamental new insights into
information processing in these cortical circuits, including those underlying motor, sensory, and cognitive
processes. However, previous analytical approaches to uncovering dynamics have typically been developed and
tested in specific brain areas, for limited behaviors, in restricted behavioral settings. Ironically, it is not unusual
for these methods to have 10^5 parameters that need to be set or learned, and require careful tuning to properly
function. Yet the brain is not homogenous, and it is unclear how well these approaches can be made to
generalize to a variety of brain areas and behaviors, let alone by researchers who are not intimately familiar with
the methods. Further, assuming that the brain's dynamics stem from independent, isolated areas is a vast
oversimplification. Clearly, perceptual, cognitive, and motor functions all rely on activity distributed across
multiple, interacting brain areas, each of which likely has distinct dynamics. Communication between areas is a
dynamic process that underlies flexible function. There is growing recognition that population dynamics are
specifically structured to support inter-area interaction, and an immediate need for methods to accurately
uncover dynamics between interacting areas.
We will address the challenge of generalized applicability to diverse brain areas by developing a powerful
new open-source toolkit for automated discovery of neural population dynamics, within highly divergent brain
areas. Further, we will extend this toolkit with new neural network architectures to model the dynamics between
interacting areas. Our approach, the Dynamical Systems ID toolkit (DSID), will support accurate and
straightforward application to data from different brain areas and behaviors without requiring great expertise or
infrastructure setup. DSID will leverage sequential autoencoders (SAEs), powerful and flexible deep learning
architectures that use recurrent neural networks to characterize nonlinear dynamical systems. We will validate
the generalizability of DSID using a combination of previously-collected and new multi-electrode recording data
from monkeys, including motor, sensory, and cognitive areas of cortex. Following their development and
validation in our labs, we will work to disseminate them throughout the appropriate research communities where
we expect they will be further developed with application to an even broader range of brain areas and behaviors.
在过去的几十年里,记录大量神经元的能力(例如,多电极
阵列,神经像素,钙成像)呈指数级增长,有希望的新途径,了解
大脑这些数据有希望提供一个定性的不同观点的活动内和跨大脑
这一工作将比以前可能的工作范围更广,但需要开发先进的分析工具。一
动力系统的工具提供了一个自然的框架,它提供了揭示协调的方法。
在记录的神经元的互连网络中表达的时变激活模式,
描述这些模式与行为的关系。这一框架提供了基本的新见解,
这些皮层回路中的信息处理,包括那些潜在的运动、感觉和认知回路
流程.然而,以前的分析方法来揭示动态通常已经开发,
在特定的大脑区域进行测试,针对有限的行为,在有限的行为环境中。具有讽刺意味的是,
对于这些方法,需要设置或学习10^5个参数,并需要仔细调优以正确地
功能然而,大脑并不是同质的,目前还不清楚这些方法能在多大程度上用于
概括到各种大脑区域和行为,更不用说那些不熟悉
方法此外,假设大脑的动力来自独立的、孤立的区域,
过于简单化。显然,知觉、认知和运动功能都依赖于分布在大脑中的活动。
多个相互作用的大脑区域,每个区域可能都有不同的动态。区域之间的通信是
这是一个以灵活功能为基础的动态过程。人们越来越认识到,人口动态是
特别是为了支持区域间的互动,迫切需要有方法来准确地
揭示相互作用区域之间的动态。
我们将通过开发一种强大的
新的开源工具包,用于在高度发散的大脑中自动发现神经种群动态
地区此外,我们将用新的神经网络架构扩展这个工具包,以模拟
互动领域。我们的方法,动态系统ID工具包(DSID),将支持准确,
直接应用于来自不同大脑区域和行为的数据,而不需要更多的专业知识,
基础设施建设。DSID将利用顺序自动编码器(SAE),强大而灵活的深度学习
使用递归神经网络来表征非线性动态系统的架构。我们将验证
使用先前收集的和新的多电极记录数据的组合的DSID的普遍性
包括运动、感觉和认知皮层。随着其发展和
在我们的实验室验证,我们将努力传播他们在适当的研究社区,
我们期望它们将得到进一步的发展,应用于更广泛的大脑区域和行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Miller其他文献
Lee Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Miller', 18)}}的其他基金
Monkey-to-human transfer of trained iBCI decoders through nonlinear alignment of neural population dynamics
通过神经群体动态的非线性对齐,将经过训练的 iBCI 解码器从猴子转移到人类
- 批准号:
10791477 - 财政年份:2023
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8188037 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
7750515 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8291988 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8470719 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8849982 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
7159350 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
8661794 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
A primate model of an intra-cortically controlled FES prosthesis for grasp
用于抓握的皮质内控制 FES 假肢的灵长类动物模型
- 批准号:
7545455 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
Primate model of an intracortically controlled FES prost
皮质内控制的 FES 前列腺的灵长类动物模型
- 批准号:
7018987 - 财政年份:2006
- 资助金额:
$ 131.25万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 131.25万 - 项目类别:
Research Grant