Deep Learning To Automate Late Mechanical Activation Detection From Cardiac Magnetic Resonance Images
深度学习自动检测心脏磁共振图像的晚期机械激活
基本信息
- 批准号:10593788
- 负责人:
- 金额:$ 22.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAgreementArrhythmiaArtificial IntelligenceBrain natriuretic peptideCardiacCharacteristicsCicatrixComputer softwareComputersConsumptionDataData SetDefibrillatorsDetectionDevicesDimensionsDiseaseEchocardiographyEducational process of instructingEffectivenessElectronicsExercise TestGadoliniumGoalsGrantHeartHeart failureImageImplantInferiorInstitutionJointsKnowledgeLeadLeftLifeLocationLongterm Follow-upMachine LearningMagnetic ResonanceMapsMeasuresMechanicsMethodsModelingMorbidity - disease rateMyocardialNetwork-basedOutcomePacemakersPatient SelectionPatientsPerformanceProceduresQuality of lifeQuestionnairesSelection for TreatmentsSerumSiteSpecialistTechniquesTestingTimeTissue ViabilityVentricularVisualWorkartificial intelligence methodcardiac implantcardiac magnetic resonance imagingcardiac resynchronization therapycomorbiditydeep learningdeep neural networkdemographicsdesignexperiencefollow-upfunctional restorationheart functionheart rhythmimaging studyimplantable deviceimprovedinnovationmachine learning methodmortalitymulti-task learningneural networknovelnovel strategiesresponsetherapy outcometooltreatment response
项目摘要
Project summary:
This proposal aims to develop advanced machine learning and artificial intelligence (ML/AI)
techniques to rapidly and accurately identify sites with late mechanical activation (LMA) and
compute circumferential uniformity estimate with singular value decomposition (CURE-SVD) from
standard cine cardiac magnetic resonance (CMR) images. Our long-term goal is to develop
networks that can determine LMA sites / CURE-SVD automatically from cine images acquired at
any CMR facility worldwide, thereby addressing a critical need in the effective guidance of device-
based therapies, such as Cardiac resynchronization therapy (CRT), for potentially millions of heart
failure patients. To accomplish this goal, we will make use of a rich and unique dataset we have
assembled at our institution based on over 200 patients undergoing CRT with a median follow-up
of five years. The data set includes demographics and comorbid diseases from EHR review, pre-
CRT/post-CRT imaging with CMR cine/DENSE/LGE (late gadolinium enhancement),
echocardiography, and multidimensional response parameters based on overall survival, serum
B-type natriuretic peptide testing, quality of life questionnaires, and exercise testing for peak VO2.
The central hypothesis of this proposal is that these ML/AI methods will effectively identify the
characteristics of scar-free LMA sites from cine imaging, achieving excellent agreement
compared with the original DENSE-based assessments, and predict post-CRT outcomes. Our
specific aims are (i) identifying LMA sites and computing CURE-SVD by developing joint neural
networks with inputs from cine SSFP/GRE images, (ii) with the addition of scar from LGE in the
network, we will develop a novel multi-task learning to consider scar information in the
determination of LMA sites free of scar, and (iii) comparing the performance of our proposed
methods with ground truth DENSE and results obtained from commercial feature tracking
software to predict CRT outcomes in the dataset with 200+ CRT patients with complete CRT
response data and long-term follow-up for survival and arrhythmia outcomes.
项目概要:
该提案旨在开发先进的机器学习和人工智能(ML/AI)
快速准确识别晚期机械激活(LMA)部位的技术,
用奇异值分解(CURE-SVD)计算圆周均匀性估计,
标准电影心脏磁共振(CMR)图像。我们的长期目标是发展
网络,可根据采集的电影图像自动确定LMA部位/ CURE-SVD,
全球任何CMR设施,从而满足有效引导设备的关键需求-
基于治疗,如心脏起搏治疗(CRT),为潜在的数百万心脏
失败的病人为了实现这一目标,我们将利用我们拥有的丰富而独特的数据集
在我们的机构收集了超过200例接受CRT的患者,中位随访时间为
五年数据集包括来自EHR回顾的人口统计学和共病疾病,
CRT/CRT后成像,CMR电影/DENSE/LGE(晚期钆增强),
超声心动图和基于总生存期、血清
B型利钠肽检测、生活质量问卷调查和运动试验的峰值VO 2。
该提案的中心假设是,这些ML/AI方法将有效地识别
电影成像中无瘢痕LMA部位的特征,达到极好的一致性
与最初的基于DENSE的评估相比,并预测CRT后的结果。我们
具体目标是(i)通过开发联合神经网络来识别LMA站点并计算CURE-SVD
网络与输入从电影SSFP/GRE图像,(ii)与添加疤痕从LGE在
网络,我们将开发一种新的多任务学习,考虑疤痕信息,
确定LMA网站无疤痕,和(iii)比较我们提出的性能
方法与地面真理密度和商业特征跟踪获得的结果
预测200多例接受完全CRT的CRT患者数据集中CRT结局的软件
反应数据和长期随访的生存率和心律失常的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miaomiao Zhang其他文献
Miaomiao Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 22.37万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 22.37万 - 项目类别:
Standard Grant