Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
基本信息
- 批准号:10594266
- 负责人:
- 金额:$ 14.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAlzheimer&aposs DiseaseAwardBehaviorBiologyBrainBrain DiseasesBrain regionBrain scanClinicalCognitionCommunicationComplexComputer softwareDataData AnalysesData CollectionDedicationsDetectionDiagnosisEducationEducational workshopEnvironmentExhibitsFoundationsFunctional Magnetic Resonance ImagingFutureGoalsGrowthHeadHumanImageImage AnalysisIndividualInterdisciplinary StudyJournalsKnowledgeLeadMedicineMentorsMethodologyMethodsModelingMorphologic artifactsMotionNeurologicNeurosciencesParticipantPathway AnalysisPatient-Focused OutcomesPredispositionPreventionResearchResearch ActivityResearch DesignResearch Project GrantsScanningScientistSeriesSlideStatistical Data InterpretationStatistical MethodsStructureSystemTechniquesTimeTrainingTraining ActivityTraining ProgramsVariantVocational GuidanceWorkbiomarker identificationbrain dysfunctioncareercomputational neurosciencedetection limitearly detection biomarkersexperimental studyforestfunctional MRI scanimprovedinfancyinnovationinsightinterestmarkov modelmemberneuroimagingnovelresponseskillsstudy populationsymposiumtheoriestool
项目摘要
My objective for the K25 award is to establish myself as an independent neuroimaging statistician, with
expertise in whole-brain network analyses and an integral member of multidisciplinary research teams devoted
to addressing diseases of the brain. Attaining these goals will require didactic training and research guidance.
Research
We will develop new methodology to improve whole-brain dynamic connectivity analyses of normal and
abnormal brain function, which is vital for understanding various brain disorders, such as Alzheimer’s Disease,
and may help identify biomarkers and inform early prevention and treatment. Previous studies are largely
based on one average network constructed using data from an entire brain scan (i.e., static connectivity), but
emerging evidence suggests network topology exhibits meaningful variations on the second to minute scale,
creating a gap in understanding unless these variations are quantified. While several methods have been
proposed to address this new direction in the field, there does not yet exist a unifying framework that
accurately estimates whole-brain networks, as well as the dynamics of network change across a functional
magnetic resonance imaging (fMRI) experiment, while a) accounting for variables of interest and motion-
induced artifacts and b) allowing for individual estimates of dynamics. The novel methods proposed here will
address these needs and provide a set of tools for future dynamic brain network analysis research. This
research, along with my proposed training plan, will facilitate my progression toward becoming an independent
neuroimaging statistician with expertise in brain network analysis.
Training
The proposed training program involves four components: 1) career guidance and neuroscience and network
analysis training from a mentoring committee; 2) an educational component to establish fundamental
knowledge in computational neuroscience and image analysis; 3) performing innovative research using the
skills gained from the proposed training plan and; 4) participating in the exchange of knowledge and ideas with
other statisticians and neuroscientists through workshops, conferences, seminar series, and journal clubs. The
training will enable me to shift from an early career statistician to an established, independent, neuroimaging
statistician with expertise in whole-brain network analyses. The training in computational neuroscience and
image analysis will allow me to become a multidisciplinary research team scientist dedicated to studying the
human brain. The growth gained through this 5-year period will lead to a skill set, and a confidence, that allows
me to be more well-versed in the neuroscience and biology behind the data I am analyzing. This will ultimately
lead to more effective communication with neuroscientists and clinicians, improved study design, more
informed statistical analyses, and a more comprehensive interpretation of the results in my future work.
我获得K25奖的目标是成为一名独立的神经影像学统计学家,
全脑网络分析方面的专业知识,以及致力于
to addressing解决diseases疾病of the brain脑.实现这些目标需要教学培训和研究指导。
研究
我们将开发新的方法来改善正常和非正常脑的全脑动态连接分析。
异常的大脑功能,这是至关重要的了解各种大脑疾病,如阿尔茨海默氏病,
并可能有助于识别生物标志物并为早期预防和治疗提供信息。以前的研究主要是
基于使用来自整个大脑扫描的数据构建的一个平均网络(即,静态连接),但
新出现的证据表明网络拓扑在秒到分钟的尺度上表现出有意义的变化,
除非这些变化被量化,否则会造成理解上的差距。虽然已经有几种方法
尽管有人建议在实地处理这一新方向,但目前还没有一个统一的框架,
准确地估计全脑网络,以及网络变化的动态跨功能
磁共振成像(fMRI)实验,而a)考虑到感兴趣的变量和运动-
诱发的伪影和B)允许单独估计动态。这里提出的新方法将
满足这些需求,并为未来的动态脑网络分析研究提供一套工具。这
研究,沿着我提出的培训计划,将促进我成为一个独立的发展
神经影像学统计学家,擅长大脑网络分析。
培训
建议的培训计划包括四个组成部分:1)职业指导和神经科学和网络
指导委员会的分析培训; 2)教育部分,以建立基本的
在计算神经科学和图像分析的知识; 3)进行创新的研究,
从拟议的培训计划中获得的技能; 4)参与知识和想法的交流,
其他统计学家和神经科学家通过讲习班,会议,系列研讨会和期刊俱乐部。的
培训将使我从一个早期的职业统计学家转变为一个成熟的,独立的,神经影像学
具有全脑网络分析专长的统计学家。计算神经科学的培训,
图像分析将使我成为一个多学科的研究团队的科学家,致力于研究
人脑通过这5年的成长将带来一套技能和一种信心,
我希望我能更精通我正在分析的数据背后的神经科学和生物学。这将最终
与神经科学家和临床医生进行更有效的沟通,改进研究设计,
有据可查的统计分析,并在我今后的工作中对结果作出更全面的解释。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heather Marie Shappell其他文献
Heather Marie Shappell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于语义理解的中文地址匹配关键技术研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于众源地址数据的标准地址集智能化构建方法研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向空间语义建模与检索的城市地址图模型研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
新型智慧城市地名地址数据融合治理关键技术研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于SDN的动目标防御网络关键技术研究
- 批准号:61702535
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 14.45万 - 项目类别:
Research Grant