Protein modification and the aging phenotype of human skeletal muscle
蛋白质修饰与人类骨骼肌的衰老表型
基本信息
- 批准号:10593791
- 负责人:
- 金额:$ 18.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:ActinsAcuteAddressAdultAgeAgingAreaAtrophicBindingBiologyCardiacCell RespirationCharacteristicsClinicalCouplingCyclic AMP-Dependent Protein KinasesDataDependenceElderlyExhibitsFailureFatigueFiberFunctional disorderGoalsHeartHeart failureHumanImpairmentIn VitroInterventionIsometric ContractionIsometric ExerciseKineticsLeadLifeLongevityMediatingModificationMolecularMolecular TargetMuscleMuscle CellsMuscle FibersMuscle TensionMuscle functionMuscular AtrophyMyocardialMyosin ATPaseMyosin Regulatory Light ChainsOutcomePerformancePhenotypePhosphorylationPhysical FunctionPhysical RehabilitationPost-Translational Protein ProcessingProtein DephosphorylationProtein IsoformsProteinsRehabilitation OutcomeReportingResearchResistanceRiskRoleSarcomeresSequence HomologySkeletal MuscleTestingThick FilamentThin FilamentTissue SampleTissuesTranslatingWalkingage relateddisabilityexperienceexperimental studyfall riskfrailtygenetic regulatory proteinimprovedin vivointerestmuscle agingmuscle formmyosin-binding protein Cnovelphysically handicappedpre-clinicalpreclinical studysarcopeniascreeningskeletalskeletal muscle wastingyoung adult
项目摘要
Project Summary
Age-related reductions in muscle contractile performance are mediated by reductions in muscle size (atrophy)
and alterations in actin-myosin cross bridge function that are independent of size. Together, they contribute to
sarcopenia, the age-related loss of skeletal muscle mass and function. A hallmark of sarcopenia is the loss of
contractile power (= product of force and velocity) which, in turn, predicts physical dysfunction, and mobility
disability. Importantly, contractile power declines earlier in life and more precipitously than reductions in
contractile force or muscle size, thereby suggesting that power is subject to the influence of unique
mechanisms. During repeated contractions of high velocity, muscle fatigability is also increased with age, such
that older, healthy adults experience a much greater reduction in muscular power over the course of a
single bout of repeated voluntary contractions. In combination, these aspects of muscle aging leave older
adults at greater risk of falls and physical impairments during repetitious activities (stair climbing, walking etc.).
Somewhat paradoxically, muscle tension (force per unit cross sectional area) has been shown to increase
with age when contractile velocity is zero (isometric). Similarly, older adults are less fatigable during
isometric contractions. This constellation of poorly understood functional characteristics defines an Aging
Phenotype of skeletal muscle whose mechanisms may reveal important targets for intervention for improving
physical function in older adults with sarcopenia. We propose that alterations in cross-bridge level biology in
the aging sarcomere contribute to velocity-dependent contractile dysfunction and will perform experiments in
human skeletal muscle to test the hypothesis that the sarcomeric protein Myosin Binding Protein C (MyBP-C)
is central to this phenomenon.
MyBP-C is a regulatory protein located near the center of the sarcomere, known to modulate myocardial
contractility via phosphorylation-dependent interactions with the thin and thick filaments. While skeletal and
cardiac isoforms of MyBP-C are highly conserved and share structural and sequence homology, it is not clear
whether MyBP-C has similar phosphorylation-dependent influences on skeletal muscle contractility. Recent
pre-clinical studies suggest skeletal MyBP-C phosphorylation influences contractile force and velocity, and age
and fatiguing contractions alter phosphorylation differentially. Our studies in isolated human single muscle
fibers will translate pre-clinical evidence to humans and allow us to interrogate the influence of MyBP-C on age
and fatigue-related changes in skeletal muscle contractility. We will identify post translational modifications to
sarcomeric proteins with age and fatigue while screening for other candidates of interest within the human
muscle cell. These studies will reveal important information regarding the poorly understood Aging Phenotype
of Skeletal Muscle while establishing foundational data supporting the pursuit of molecular targets for
interventions with the goal of improving clinical outcomes in older adults.
项目摘要
与年龄相关的肌肉收缩性能下降是由肌肉尺寸减少(萎缩)介导的
以及肌动蛋白-肌球蛋白跨桥功能的改变,其与大小无关。它们共同促成了
肌肉减少症,即与年龄相关的骨骼肌质量和功能丧失。肌肉减少症的一个标志是
收缩力(=力和速度的乘积),这反过来又预示着身体功能障碍和运动能力
残疾。重要的是,收缩力在生命的早期下降,并且比心脏收缩力的下降更急剧。
收缩力或肌肉大小,从而表明功率受到独特的影响,
机制等在高速度的重复收缩过程中,肌肉疲劳性也随着年龄的增长而增加,
老年人,健康的成年人经历了更大的减少肌肉力量的过程中,
一次反复的自主收缩结合起来,肌肉老化的这些方面使老年人
成年人在重复性活动(爬楼梯、步行等)中发生福尔斯和身体损伤的风险更大。
有些矛盾的是,肌肉张力(每单位横截面积的力)已被证明增加
随着年龄的增长,收缩速度为零(等距)。同样,老年人在工作期间也不容易疲劳。
等长收缩这种对功能特征知之甚少的星座定义了一种衰老,
骨骼肌的表型,其机制可能揭示干预改善的重要靶点
老年肌肉减少症患者的身体功能。我们建议,在跨桥水平生物学的改变,
老化肌节导致速度依赖性收缩功能障碍,
肌节蛋白肌球蛋白结合蛋白C(MyBP-C)
是这一现象的核心。
MyBP-C是一种位于肌节中心附近的调节蛋白,已知可调节心肌细胞的生长,
通过磷酸化依赖的相互作用与细和粗丝的收缩性。虽然骨瘦如柴,
MyBP-C的心脏亚型是高度保守的,具有结构和序列同源性,
MyBP-C是否对骨骼肌收缩性具有类似的磷酸化依赖性影响。最近
临床前研究表明骨骼肌MyBP-C磷酸化影响收缩力和速度,
和疲劳收缩改变磷酸化差异。我们在离体人单个肌肉中的研究
纤维将把临床前的证据翻译给人类,使我们能够询问MyBP-C对年龄的影响。
和骨骼肌收缩力的疲劳相关变化。我们将鉴定翻译后修饰,
在筛选人体内其他感兴趣的候选者时,
肌肉细胞这些研究将揭示关于鲜为人知的衰老表型的重要信息
同时建立基础数据,支持追求分子靶点,
以改善老年人的临床结果为目标的干预措施。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predicting myosin heavy chain isoform from postdissection fiber length in human skeletal muscle fibers.
根据人体骨骼肌纤维的解剖后纤维长度预测肌球蛋白重链亚型。
- DOI:10.1152/ajpcell.00700.2023
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Privett,GraceE;Ricci,AustinW;Ortiz-Delatorre,Julissa;Callahan,DamienM
- 通讯作者:Callahan,DamienM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Damien Mark Callahan其他文献
Damien Mark Callahan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 18.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 18.49万 - 项目类别:
Standard Grant