MR Fingerprinting based Quantitative Imaging and Analysis Platform (MRF-QIA) for brain tumors.
基于 MR 指纹的脑肿瘤定量成像和分析平台 (MRF-QIA)。
基本信息
- 批准号:10593584
- 负责人:
- 金额:$ 61.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAminolevulinic AcidBindingBiopsyBrain NeoplasmsBrain scanClinicalClinical ProtocolsClinical ResearchClinical TrialsCollaborationsComprehensive Cancer CenterComputer softwareConsumptionCountryDevelopmentDiagnosisDropsEnsureEnvironmentExcisionFingerprintFutureGlioblastomaGliomaGoalsHealthcareImageImage AnalysisImaging DeviceImaging TechniquesInfiltrationInstitutionLicensingMRI ScansMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMapsMarketingMeasurementMeasuresMulti-Institutional Clinical TrialNeurosurgeonNewly DiagnosedOperative Surgical ProceduresPathologicPathologyPatient CarePatient-Focused OutcomesPatientsPerformancePhysiciansPhysiologicalPropertyRadiation Dose UnitRadiation OncologistRadiation therapyRadiogenomicsRadiology SpecialtyRecurrenceRelaxationReproducibilityResearchSamplingScanningSiteStandardizationSystemTechniquesTestingTherapy trialTimeTissue SampleTissuesTranslatingTravelValidationVariantVendorbrain tumor imagingcancer imagingclinical applicationclinical careclinical imagingclinical implementationclinical research siteclinical translationcomputerized data processingdigitalexperienceimaging biomarkerimaging platformimprovedimproved outcomeindustry partnerinterestneurosurgerynext generationnoveloutcome predictionperformance sitepersonalized medicinepredictive modelingpredictive toolsprospectivequantitative imagingradiologistradiomicsreconstructionrecruitsynergismtargeted treatmenttooltreatment planningtrial comparingtrial planningtumorvolunteer
项目摘要
Abstract
The clinical utility of MR images is largely as a qualitative tool without in-built standardization,
which requires subjective interpretation and time-consuming analysis. Importantly, these
qualitative MRI approaches have demonstrated poor tissue characterization, and poor center-to-
center reproducibility, greatly limiting their use in clinical trials. Availability of a robust quantitative
imaging tool with high tissue discriminability can directly impact clinical care by offering actionable
information to end-user clinicians. As an example, availability of accurate tumor infiltration maps
in Glioblastomas, a highly aggressive brain tumor, can pave the way for novel multisite clinical
trials in personalized radiation therapy and neurosurgery for improved outcomes. None of the
current MRI techniques offer this capability in an accurate and reproducible manner. MRF is a
quantitative imaging scan that can address the limitations of qualitative MRI by providing
reproducible and physiologically meaningful measurements of tissue properties. We have also
shown that utilizing the underlying physical/physiological bounds of the quantitative MRF values
improves the reproducibility of the image analysis techniques. Integration of MRF and advanced
quantitative analytics could fundamentally address the well-recognized low-reproducibility in
qualitative MRI approaches and allow broad clinical translation. In this proposal, we have
established an academic-industrial partnership among MRF developers (CWRU), image analysis
and AI experts (UPenn), Brain tumor imaging experts (UHCMC), and leading healthcare company
(Siemens) to ensure successful clinical translation of the MRF-QIA into the clinical workflow. We
will achieve our goal with the following aims: Aim 1: Establish a high throughput MRF scan and
assess multisite performance for FDA approval; Aim 2: Fully integrate the MRF-QIA image
analytics software into the clinical system for brain tumor analysis; Aim 3: Clinical validation of the
MRF-QIA application for infiltration prediction in Glioblastoma patients. This project will add new
capabilities to the clinical flow directly impacting the end-user experience and patient care: 1) FDA
approval of MRF product scan will allow any Siemens clinical site to add it to their routine patient
scans. 2) The MRF-QIA software will be distributed globally through Siemens Global Digital
Market and will be available for broad clinical and multisite research applications. 3) The
specialized application for GB infiltration prediction will lead to new clinical trials for planning
targeted biopsy, extended resections, and personalized radiotherapy by neurosurgeons and
neuro-oncologists to eventually provide targeted treatment plans for GB patients.
摘要
MR图像的临床应用主要是作为没有内置标准化的定性工具,
这需要主观解释和耗时的分析。重要的是这些
定性MRI方法已经证明了较差的组织定征,以及较差的中心-
中心的可重复性,极大地限制了它们在临床试验中的使用。可靠的定量
具有高组织辨别力的成像工具可以通过提供可操作的
最终用户临床医生的信息。例如,准确的肿瘤浸润图的可用性
胶质母细胞瘤是一种高度侵袭性的脑肿瘤,
在个性化放射治疗和神经外科手术中进行试验,以改善结果。概无
目前的MRI技术以精确和可再现的方式提供这种能力。MRF是一个
定量成像扫描可以通过提供
组织特性的可再现的和生理上有意义的测量。我们还
表明利用定量MRF值的潜在物理/生理界限
提高了图像分析技术的再现性。MRF与高级
定量分析可以从根本上解决公认的低重现性,
定性MRI方法,并允许广泛的临床翻译。在本提案中,我们有
在MRF开发人员(CWRU)之间建立了学术-工业合作伙伴关系,图像分析
人工智能专家(UPenn),脑肿瘤成像专家(UHCMC)和领先的医疗保健公司
(Siemens),以确保将MRF-QIA成功临床转化为临床工作流程。我们
将通过以下目标实现我们的目标:目标1:建立高通量MRF扫描,
评估FDA批准的多站点性能;目标2:完全集成MRF-QIA图像
目的3:将分析软件应用于脑肿瘤分析的临床系统;目的3:
MRF-QIA应用于胶质母细胞瘤患者的浸润预测。该项目将新增
直接影响最终用户体验和患者护理的临床流程能力:1)FDA
MRF产品扫描的批准将允许任何西门子临床研究中心将其添加到其常规患者中
扫描。2)MRF-QIA软件将通过西门子全球数字公司在全球范围内分销
市场,并将可用于广泛的临床和多站点研究应用。3)的
GB浸润预测的专门应用将导致新的临床试验计划
神经外科医生的靶向活检、扩大切除和个性化放疗,
神经肿瘤学家最终为GB患者提供有针对性的治疗计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chaitra Badve其他文献
Chaitra Badve的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 61.82万 - 项目类别:
Research Grant