Mechanisms and In Vivo Activity of a Next Generation Daptomycin Antibiotic
下一代达托霉素抗生素的机制和体内活性
基本信息
- 批准号:10593558
- 负责人:
- 金额:$ 6.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-11-04 至 2024-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmino AcidsAnimal ModelAnimalsAnti-Bacterial AgentsAnti-Infective AgentsAntibiotic TherapyAntibioticsBacteremiaBacteriaBiodiversityBiological AssayBiologyCalciumCell WallChemical StructureChemicalsChemistryClinicCombating Antibiotic Resistant BacteriaCommunicable DiseasesComplementDaptomycinDevelopmentDiphosphatesDisease OutbreaksDoseDrug KineticsEndocarditisEnterococcus faecalisFDA approvedFaceFluorescence SpectroscopyFunding OpportunitiesFutureGenerationsGoalsGram-Positive BacteriaGram-Positive Bacterial InfectionsHandHot SpotImmuneIn VitroInfectionLeadMembrane LipidsMethodologyMethodsMicrobeMicrobiologyMicroscopicMicroscopyModelingModificationMolecular ConformationMulti-Drug ResistanceMusNMR SpectroscopyParentsPathogenicityPatientsPeptidesPeriodicityPharmaceutical PreparationsPredispositionProcessPropertyProteinsPublishingReportingResearchResistanceResistance developmentRouteRunningSkinStaphylococcus aureusStatistical Data InterpretationStructureSystemic infectionThigh structureToxic effectTrainingTranslational ResearchUncertaintyanalogantimicrobialassay developmentbacterial resistancecytotoxicityepidemic potentialexperimental studyglobal healthimprovedin vitro Assayin vitro activityin vivoin vivo Modelinnovationinsightinterdisciplinary approachmicrobialmicroorganismmortalitynext generationnovelpreventprogramspublic health relevanceresistant strainsmall molecule
项目摘要
Abstract
Microbial resistance against current medications is on the rise, with the serious threat of bacteria becoming
immune against all available drugs. There is no doubt that a renewed focus on anti-infective compounds is highly
desired to prevent potential epidemic outbreaks of infectious diseases. Daptomycin is an FDA-approved
antibiotic for the treatment of Gram-positive bacterial infections. It has a strict requirement for calcium to fulfill its
antibiotic activity. Recent reports highlight the resistance of different strains against daptomycin. This urges the
need for the development of next generation daptomycin antibiotics to circumvent resistance. However, the
complexity of daptomycin’s chemical structure hinders modifying this antibiotic via traditional synthetic
approaches. We have recently reported a novel chemoenzymatic method for the synthesis of specific
daptomycin derivatives with stronger in vitro activity against daptomycin-susceptible and resistant bacteria. The
new analogs, in contrast to the parent molecule, do not require calcium for antibacterial activity suggesting a
new mechanism of action. The goal of this proposal is to study the new mechanism of the newly developed
analogs in in vitro and in vivo models. We will use multidisciplinary approaches at the interface of chemistry and
biology to provide more depth on the mechanisms and activity of the newly generated analogs. Specific Aim 1
will study the physicochemical and microscopic properties of our daptomycin derivatives to reveal the
mechanisms of the newly synthesized compounds. Specific Aim 2 will study the new chemoenzymatically-
synthesized derivatives in animal models to provide information on their in vivo activity and pharmacokinetics.
This proposal emphasizes translational research and will lead to the development of stronger antibiotics that
circumvent resistance. Hence this study will have a significant impact on multiple avenues that could lead to
bridging these compounds to the clinic. Overall, the proposal will lay the groundwork for a research program that
integrates in vivo activity, microbiology, physicochemical properties and mechanistic insights to access new
routes to daptomycin biological diversity. The results obtained from this study will be extended to other
lipopeptide antibiotics in terms of their microbial resistance and activity. This research will highlight the
importance of chemoenzymatic approaches to complement synthetic ones to modify other bioactive compounds.
This proposal will also align with my lab’s overall goal to address the constant need to expand the chemical
space of small molecules to meet rising challenges of resistant microbes and improve their selectivity.
摘要
微生物对当前药物的耐药性正在上升,细菌的严重威胁正在变得越来越严重。
对所有药物免疫毫无疑问,重新关注抗感染化合物是非常重要的。
以防止传染病的潜在流行爆发。达托霉素是FDA批准的
用于治疗革兰氏阳性细菌感染的抗生素。它对钙有严格的要求,以满足其
抗菌活性最近的报告强调了不同菌株对达托霉素的耐药性。这推动
需要开发下一代达托霉素抗生素以避免耐药性。但
达托霉素化学结构的复杂性阻碍了通过传统的合成方法对这种抗生素进行修饰,
接近。我们最近报道了一种新的化学酶法合成特异性的
对达托霉素敏感和耐药细菌具有更强体外活性的达托霉素衍生物。的
与母体分子相反,新的类似物不需要钙来产生抗菌活性,这表明
新的作用机制。本提案的目标是研究新开发的
在体外和体内模型中的类似物。我们将使用多学科的方法,在化学和
生物学提供更多的深度机制和新产生的类似物的活动。具体目标1
将研究我们的达托霉素衍生物的理化和微观性质,以揭示
新合成化合物的机制。具体目标2将研究新的化学酶-
在动物模型中合成衍生物,以提供关于其体内活性和药代动力学的信息。
该提案强调转化研究,并将导致开发更强的抗生素,
规避阻力。因此,这项研究将对多种途径产生重大影响,
将这些化合物应用于临床。总的来说,该提案将为一项研究计划奠定基础,
整合了体内活性、微生物学、物理化学特性和机制见解,以获得新的
达托霉素生物多样性的途径。从这项研究中获得的结果将扩展到其他
脂肽类抗生素在它们的微生物抗性和活性方面的优势。这项研究将突出
化学酶法补充合成方法以修饰其他生物活性化合物的重要性。
这项提案也将与我的实验室的总体目标,以解决不断需要扩大化学
小分子的空间,以满足耐药微生物的日益增长的挑战,并提高其选择性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sherif I Elshahawi其他文献
Sherif I Elshahawi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 6.9万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 6.9万 - 项目类别: