Neural mechanisms of foraging decisions

觅食决策的神经机制

基本信息

  • 批准号:
    10594029
  • 负责人:
  • 金额:
    $ 7.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY / ABSTRACT Understanding how the brain makes decisions based on noisy sensory information is one of the central goals of neuroscience, but past efforts to study this process have been hindered by three challenges: (1) Animals make decisions in complex environments that do not always map onto the simplistic binary decision tasks typically used in the lab; (2) Decisions are influenced by slowly changing variables like environment value that are difficult to study in short experiments; (3) Decision making involves a large network of interacting brain regions, each of which influences and is influenced by many others. The proposed research addresses these three problems simultaneously by developing a complex yet naturalistic foraging task for mice and applying recently developed neurobiological techniques to record and manipulate neural activity in multiple brain regions over long time scales. The long-term objective is to use this combination of behavioral and neurobiological techniques to understand decision making in a naturalistic foraging context. The proposed research investigates the hypothesis that foraging decisions are driven by neural integrator mechanisms akin to those used to integrate sensory evidence for perceptual judgments, and require bidirectional communication between cortex and striatum, which are often studied in isolation but in fact must communicate to generate decisions. Simultaneous optogenetic perturbations and large-scale recordings will be used to dissect the interplay between medial prefrontal cortex (mPFC) and dorsomedial striatum (DMS), which of the many interconnected regions of cortex and striatum are among the most likely to contribute to the integration processes needed to forage efficiently. Indeed, preliminary mPFC recordings show signatures of temporal reward integration. Spatiotemporally precise optogenetic perturbations with simultaneous neural recordings will reveal which aspects of this computation occur locally in mPFC and/or through corticostriatal interactions. Finally, novel longitudinal electrophysiological recording techniques will answer how environment value, a key variable in foraging decisions, is tracked over long time scales (days). This question has been difficult to study in the past due to the technical challenge of tracking the same neurons over time scales longer than several hours. Together, these experiments will advance the field’s understanding of how distributed networks of brain areas solve a complex yet ethologically relevant decision-making problem. This will create deeper knowledge of how the healthy brain tracks rewarding outcomes to make decisions, which is critical for understanding what goes awry in dysfunctional states like addiction, obsessive compulsive disorder, and mood disorders. This project will take place in the Uchida Laboratory in the Department of Molecular and Cellular Biology at Harvard University. The Laboratory and Department are well-equipped to support the proposed research and provide rigorous postdoctoral training to the fellowship applicant.
项目摘要/摘要

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malcolm Guy Campbell其他文献

Malcolm Guy Campbell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malcolm Guy Campbell', 18)}}的其他基金

Neural mechanisms of foraging decisions
觅食决策的神经机制
  • 批准号:
    10374783
  • 财政年份:
    2021
  • 资助金额:
    $ 7.18万
  • 项目类别:

相似海外基金

Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2019
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2018
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2017
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2016
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2015
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
  • 批准号:
    8810865
  • 财政年份:
    2015
  • 资助金额:
    $ 7.18万
  • 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
  • 批准号:
    RGPIN-2015-05926
  • 财政年份:
    2015
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
  • 批准号:
    385453-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
  • 批准号:
    FT110100972
  • 财政年份:
    2012
  • 资助金额:
    $ 7.18万
  • 项目类别:
    ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
  • 批准号:
    DP120103813
  • 财政年份:
    2012
  • 资助金额:
    $ 7.18万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了