A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
基本信息
- 批准号:10593959
- 负责人:
- 金额:$ 58.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-05 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3&apos Untranslated RegionsAcute Lung InjuryAcute Respiratory Distress SyndromeAddressAdherens JunctionAffectAlveolarAlveolar wallAnimal ModelAnimalsBindingCellsCessation of lifeChestCirculationClinicalComplexCultured CellsCytoskeletal ModelingDNA deliveryDiseaseEdemaElectroporationEndotheliumEpithelial CellsEpitheliumFamily suidaeGene DeliveryGene ExpressionGene TargetingGene TransferGenesGeneticGoalsHumanInflammationInjuryIonsK ATPaseLength of StayLiquid substanceLungMediatingMedicalMethodsMicroRNAsModelingMolecularMusMyocardial dysfunctionPathway interactionsPatientsPeptidesPeriodicityPhysiologic pulsePlayProceduresPropertyProtein OverexpressionProtein-Serine-Threonine KinasesProteinsPulmonary EdemaRNA deliveryRattusReportingResolutionRoleSepsisSerumSmall Interfering RNASyndromeTestingTight JunctionsTransfectionTraumaTreatment EfficacyWateralveolar epitheliumaspirateeffective therapyelectric fieldexperimental studygene functiongene therapyimprovedimproved outcomeinhibitorlung injurymortalitymouse modelmultimodalitynanoparticlenon-viral gene therapynoveloverexpressionporcine modelpulmonary functionsepticstandard of care
项目摘要
Acute lung injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) are common, devastating clinical
syndromes that affect large numbers of (200,000 cases in the US per year) and have approximately 30%
mortality with the current standard of care. We have developed a highly effective treatment for this disease in
mouse and pig models that uses the ubiquitous overexperssion of the β1 subunit of the Na+,K+-ATPase to
increase alveolar fluid clearance from the previously injured lung. Our experiments show that this treatment not
only improves edema resolution (and lung function and survival), but also improves alveolar epithelial/
endothelial barrier function by upregulating tight junction complexes. Highly efficient and safe gene delivery is
carried out using electroporation, the application of brief synchronized square wave electric pulses across the
chest following naked DNA delivery by aspiration. The procedure causes no trauma, no inflammation, no lung
injury, no cardiac dysfunction, and uses less than 0.1 J/kg of energy in 50 kg healthy or septic pigs. We have
had no deaths from transthoracic electroporation at optimal field strengths in over 90 healthy and 60 septic
pigs with ARDS. We have found that MRCKα, a serine/threonine-protein kinase and a downstream effector of
Cdc42 for cytoskeletal reorganization, is activated by β1 overexpression and is needed for the increased
activity/abundance of tight junction proteins caused by β1. We have shown that these two proteins interact,
that the β1 subunit activates MRCKα, that inhibition or genetic silencing of MRCKα in alveolar type I epithelial
cells abrogates the ability of β1 overexpression to increase tight junction abundance and activity in cultured
cells, and that overexpression of MRCKα improves barrier properties in cultured alveolar type I epithelial cells.
While β1 overexpression increases edema clearance and barrier function, we do not know which activity plays
the predominant role in its treatment ability. Further, the identification of MRCKα may provide a new target for
treatment of ALI/ARDS. We have also found that the miRNA miR-181a that has been reported to be
significantly increased in the serum of ARDS patients, targets the 3'UTRs of both the Na+,K+-ATPase β1
subunit (but not any other Na+,K+-ATPase subunit) and MRCKα. Inhibition of this miRNA by transfection of an
antagomer increases expression of both the β1 subunit and MRCKα in cells. Our studies will also test whether
modulation of miR-181a can increase both the Na+,K+-ATPase β1 subunit and MRCKα to aid resolution of lung
injury in mouse ALI/ARDS models. We will use novel cyclic amphipathic peptide nanoparticles for RNA delivery
that we have used successfully in cells and the mouse lung. The aims are to (1) determine whether improved
alveolar fluid clearance is the primary mechanism by which gene transfer of the Na+,K+-ATPase treats
ALI/ARDS; (2) test whether induction of barrier function by gene transfer of MRCKα can mediate protection
and/or treatment of ALI/ARDS in mice; and (3) determine whether gene transfer of an miR-181a inhibitor alone
can treat ALI/ARDS or further enhance Na+,K+-ATPase gene transfer-mediated treatment in mice.
急性肺损伤(ALI)和急性呼吸窘迫综合征(ARDS)是常见的、破坏性的临床疾病
影响大量(美国每年200,000例)和大约30%的综合症
在目前的护理标准下,儿童死亡率很低。我们已经开发出一种高度有效的治疗这种疾病的方法
利用普遍存在的Na+,K+-β酶1亚单位过度表达的小鼠和猪模型
增加先前受伤肺的肺泡液清除量。我们的实验表明,这种治疗方法不会
不仅可以改善水肿消退(以及肺功能和存活率),还可以改善肺泡上皮细胞。
内皮屏障通过上调紧密连接复合体发挥作用。高效和安全的基因传递是
利用电穿孔技术,将简短的同步方波电脉冲应用于
抽吸裸露DNA后的胸部。该手术不会造成创伤,不会发炎,也不会造成肺部
在50公斤健康猪或败血症猪中,能量消耗低于0.1J/kg。我们有
在90多名健康患者和60名脓毒症患者中,在最佳场强下经胸电穿孔无死亡病例
患有急性呼吸窘迫综合征的猪。我们发现,α是丝氨酸/苏氨酸蛋白激酶,也是丝氨酸/苏氨酸蛋白激酶下游的效应因子。
CDC42用于细胞骨架重组,是由β1过表达激活的,是增加
β1引起的紧密连接蛋白的活性/丰度。我们已经证明这两种蛋白相互作用,
β1亚单位激活MERCKα,即抑制或基因沉默肺泡I型上皮中的MERCKα
细胞取消β-1过表达增加紧密连接丰度和活性的能力
MERCKα的过表达改善了培养的肺泡I型上皮细胞的屏障特性。
虽然β1的过度表达增加了水肿清除和屏障功能,但我们不知道哪种活动起作用
在其治疗能力中发挥着主导作用。此外,对Mr CKα的识别可能会为
ALI/ARDS的治疗。我们还发现,已报道的miRNA miR-181a是
急性呼吸窘迫综合征患者血清中Na+,K+-ATPaseβ1的3‘UTRs显著升高
亚基(但不包括任何其他Na+,K+-ATPase亚基)和mRCKα。通过转导An基因抑制该miRNA
反抗剂增加细胞中β-1亚单位和mRCK-α的表达。我们的研究还将测试
调节miR-181a可以增加Na+,K+-ATPaseβ1亚单位和mRCKα以促进肺的分辨率
致伤小鼠ALI/ARDS模型。我们将使用新型的环状两亲性多肽纳米颗粒来传递RNA
我们已经成功地将其用于细胞和小鼠的肺中。目标是(1)确定是否有改进
肺泡液清除是Na+,K+-ATPase基因转移治疗的主要机制
(2)检测MRCKα基因转移诱导屏障功能是否具有保护作用
和/或对小鼠ALI/ARDS的治疗;以及(3)确定仅miR-181a抑制剂的基因转移
可治疗ALI/ARDS或进一步增强Na+,K+-ATPase基因转移介导的治疗作用。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gene transfer of MRCKα rescues lipopolysaccharide-induced acute lung injury by restoring alveolar capillary barrier function.
- DOI:10.1038/s41598-021-99897-3
- 发表时间:2021-10-21
- 期刊:
- 影响因子:4.6
- 作者:Liu J;Dean DA
- 通讯作者:Dean DA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David A Dean其他文献
David A Dean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David A Dean', 18)}}的其他基金
Intracellular Trafficking of DNA for Gene Therapy
用于基因治疗的 DNA 细胞内运输
- 批准号:
10710840 - 财政年份:2023
- 资助金额:
$ 58.24万 - 项目类别:
A multimodal delivery and treatment approach for Acute Lung Injury
急性肺损伤的多模式递送和治疗方法
- 批准号:
10378509 - 财政年份:2020
- 资助金额:
$ 58.24万 - 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
- 批准号:
10187645 - 财政年份:2020
- 资助金额:
$ 58.24万 - 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
- 批准号:
10631224 - 财政年份:2020
- 资助金额:
$ 58.24万 - 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
- 批准号:
10414888 - 财政年份:2020
- 资助金额:
$ 58.24万 - 项目类别:
Gene therapy for GERD-associated esophageal epithelial barrier dysfunction
GERD相关食管上皮屏障功能障碍的基因治疗
- 批准号:
10372106 - 财政年份:2020
- 资助金额:
$ 58.24万 - 项目类别:
Mitigating Acute Lung Injury by Cell-specific Targeting of MTOR
通过细胞特异性靶向 MTOR 减轻急性肺损伤
- 批准号:
10056811 - 财政年份:2020
- 资助金额:
$ 58.24万 - 项目类别:
Novel Peptide/siRNA Nanoparticles for Treatment of Acute Lung Injury
用于治疗急性肺损伤的新型肽/siRNA纳米颗粒
- 批准号:
9376455 - 财政年份:2017
- 资助金额:
$ 58.24万 - 项目类别:
Development of a gene therapy approach to treat acute lung injury using a preclinical, large animal model
使用临床前大型动物模型开发治疗急性肺损伤的基因治疗方法
- 批准号:
9044084 - 财政年份:2016
- 资助金额:
$ 58.24万 - 项目类别:
Cell-specific gene delivery methods for expression and silencing in the lung
用于肺部表达和沉默的细胞特异性基因递送方法
- 批准号:
8978332 - 财政年份:2014
- 资助金额:
$ 58.24万 - 项目类别:
相似海外基金
Impact of alternative polyadenylation of 3'-untranslated regions in the PI3K/AKT cascade on microRNA
PI3K/AKT 级联中 3-非翻译区的替代多聚腺苷酸化对 microRNA 的影响
- 批准号:
573541-2022 - 财政年份:2022
- 资助金额:
$ 58.24万 - 项目类别:
University Undergraduate Student Research Awards
How do untranslated regions of cannabinoid receptor type 1 mRNA determine receptor subcellular localisation and function?
1 型大麻素受体 mRNA 的非翻译区如何决定受体亚细胞定位和功能?
- 批准号:
2744317 - 财政年份:2022
- 资助金额:
$ 58.24万 - 项目类别:
Studentship
MICA:Synthetic untranslated regions for direct delivery of therapeutic mRNAs
MICA:用于直接递送治疗性 mRNA 的合成非翻译区
- 批准号:
MR/V010948/1 - 财政年份:2021
- 资助金额:
$ 58.24万 - 项目类别:
Research Grant
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10019570 - 财政年份:2019
- 资助金额:
$ 58.24万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10223370 - 财政年份:2019
- 资助金额:
$ 58.24万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10455108 - 财政年份:2019
- 资助金额:
$ 58.24万 - 项目类别:
Synergistic microRNA-binding sites, and 3' untranslated regions: a dialogue of silence
协同的 microRNA 结合位点和 3 非翻译区:沉默的对话
- 批准号:
255762 - 财政年份:2012
- 资助金额:
$ 58.24万 - 项目类别:
Operating Grants
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
- 批准号:
20790351 - 财政年份:2008
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Search for mRNA elements involved in the compatibility between 5' untranslated regions and coding regions in chloroplast translation
寻找参与叶绿体翻译中 5 非翻译区和编码区之间兼容性的 mRNA 元件
- 批准号:
19370021 - 财政年份:2007
- 资助金额:
$ 58.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Post-transcriptional Regulation of PPAR-g Expression by 5'-Untranslated Regions
5-非翻译区对 PPAR-g 表达的转录后调控
- 批准号:
7131841 - 财政年份:2006
- 资助金额:
$ 58.24万 - 项目类别: