Capillary control of cerebral blood flow, and its disruption in small vessel disease
毛细血管控制脑血流及其在小血管疾病中的破坏
基本信息
- 批准号:10592996
- 负责人:
- 金额:$ 49.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AblationAddressAge-associated memory impairmentAgonistAnimalsAwardBloodBlood PressureBlood capillariesBlood flowBrainBrain DiseasesBrain imagingCADASILCapillary Endothelial CellCell SeparationCellsCerebral small vessel diseaseCerebrovascular CirculationCerebrovascular DisordersCerebrumCharacteristicsComplementComplexComputer ModelsDTR geneDataDepositionDiameterDimensionsDiseaseEndothelial CellsEnergy SupplyEpidermal Growth Factor ReceptorEventExtracellular DomainExtracellular MatrixExtracellular Matrix ProteinsFatigueFeedbackFoundationsGeneticHealthHemorrhageHomeostasisHumanITPR1 geneImpairmentInheritedInositolLaser Scanning MicroscopyLeadLeftLigandsLightLinkMatrix Metalloproteinase InhibitorMediatingMembraneMetalloproteasesMicrocirculationMicrovascular DysfunctionModelingMusMutationNOTCH3 geneNeurogliaNeuronsNutrientPLC gamma1PathogenesisPathogenicityPathologicPathway interactionsPericytesPhospholipase CPreparationProcessProtein IsoformsReceptor ActivationReceptor InhibitionRegulationRelaxationResearchResistanceRoleSignal TransductionSmooth Muscle MyocytesStrokeTIMP3 geneTestingTimeTissuesTransgenic OrganismsUp-RegulationVariantVascular DementiaVasoconstrictor AgentsWorkarterioleautocrineblood flow measurementclinically relevantcomorbidityconstrictionhemodynamicsin vivoinhibitorinnovationinorganic phosphateinsightknockout animalmouse modelnovelnovel therapeuticsoverexpressionpressurereceptorresponsetwo-photonvasoactive agentvasoconstrictionvirtualvoltage
项目摘要
Summary
Neurons lack energy reserves and thus their survival depends on an uninterrupted, dynamically
regulated supply of blood-borne nutrients, which are delivered through a dense capillary network.
Precise control of the blood flow through the brain microcirculation is therefore essential for neuronal
health. However, the mechanisms through which blood is distributed within the capillary network
remains poorly understood. Furthering our understanding of this process is critical, as it is increasingly
appreciated that disruption of brain hemodynamics is one of the earliest pathological events in cerebral
small vessel diseases. Pericytes are mural cells that wrap around the endothelial cells forming the
capillaries. Our extensive preliminary data show for the first time that pericytes located on the first to
fourth order capillary branches constrict and relax in response to luminal pressure changes. This
observation implies that the resistance created by the capillary network is not constant and
homogeneous, but rather variable and dynamic, casting a new light on blood flow regulation.
Specifically, we have found that pressure-induced constriction in pericytes engages the autocrine
activation of the epidermal growth factor receptor (EGFR), subsequent inositol trisphosphate (IP3)
signaling, and transient receptor potential canonical 3 (TRPC3) activation. Using a well-established
genetic mouse model of CADASIL, a hereditary form of small vessel disease, we further propose that
pathogenic mechanisms depress the EGFR activation in pericytes, resulting in impaired capillary blood
flow autoregulation. To test these ideas, we engage a wide variety of novel, state-of-the-art experimental
approaches using intact animals, native tissue, and freshly isolated cells, complemented by
sophisticated computational modeling. Taking advantage of our newly developed pressurized arteriole-
capillary ex vivo preparation, Aim 1 will explore how EGFR activation by intraluminal pressure and
agonist-induced vasoconstriction contributes to γ1 phospholipase C (PLCγ1) activation and IP3-
dependent Ca2+ signals. Aim 2 will determine the mechanism linking EGFR and PLCγ1 activation to
TRPC3 channel opening to cause membrane depolarization and constriction. Finally, using
extracellular matrix disruptions characteristic of CADASIL as a framework, Aim 3 will provide the first
insights into the mechanisms by which pericyte contractility is regulated by EGFR and its upstream
regulators TIMP3, a matrix metalloproteinase inhibitor, and ADAM17, a metalloproteinase that
mediates shedding of the EGFR ligand, HB-EGF. The proposed work has the potential to provide a
paradigm-shifting view on how pericytes control capillary blood flow distribution, and as such, should
provide the foundation for understanding small vessel diseases of the brain.
总结
神经元缺乏能量储备,因此它们的生存依赖于不间断的、动态的
通过密集的毛细血管网络输送的血源性营养素的调节供应。
因此,精确控制通过脑微循环的血流对于神经元的发育至关重要。
健康然而,血液在毛细血管网内分布的机制
仍然知之甚少。加深我们对这一过程的理解至关重要,因为它越来越多地
认识到脑血流动力学的破坏是脑缺血最早的病理事件之一,
小血管疾病周细胞是壁细胞,其围绕内皮细胞形成血管内皮细胞。
毛细血管。我们广泛的初步数据表明,第一次,周细胞位于第一,
第四级毛细血管分支响应于管腔压力变化而收缩和舒张。这
观察表明由毛细网络产生的阻力不是恒定的,
均匀的,而是可变的和动态的,铸造了一个新的光对血流调节。
具体地说,我们已经发现,压力诱导的收缩周细胞从事自分泌
表皮生长因子受体(EGFR)激活,随后三磷酸肌醇(IP 3)
信号传导和瞬时受体电位典型3(TRPC 3)激活。使用一个完善的
CADASIL是一种遗传性小血管疾病,我们进一步提出,
致病机制抑制EGFR在周细胞中的活化,导致毛细血管血液受损
流量自动调节为了测试这些想法,我们进行了各种各样的新颖的,最先进的实验
方法使用完整的动物,天然组织和新鲜分离的细胞,辅以
复杂的计算模型利用我们新开发的加压小动脉-
毛细血管离体制备,目的1将探索EGFR如何通过腔内压力活化,
激动剂诱导的血管收缩有助于γ1磷脂酶C(PLCγ1)激活和IP 3-
依赖性Ca 2+信号。目的2将确定EGFR和PLCγ1激活与细胞凋亡之间的联系机制。
TRPC 3通道开放,导致膜去极化和收缩。最后利用
CADASIL作为框架的细胞外基质破坏特征,Aim 3将提供第一个
深入了解EGFR及其上游调控周细胞收缩性的机制
调节剂TIMP 3,一种基质金属蛋白酶抑制剂,和ADAM 17,一种金属蛋白酶,
介导EGFR配体HB-EGF的脱落。拟议的工作有可能提供一个
关于周细胞如何控制毛细血管血流分布的范式转变观点,因此,应该
为了解脑小血管疾病提供了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabrice Dabertrand其他文献
Fabrice Dabertrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fabrice Dabertrand', 18)}}的其他基金
Capillary control of cerebral blood flow, and its disruption in small vessel disease
毛细血管控制脑血流及其在小血管疾病中的破坏
- 批准号:
9291583 - 财政年份:2017
- 资助金额:
$ 49.03万 - 项目类别:
Capillary control of cerebral blood flow, and its disruption in small vessel disease
毛细血管控制脑血流及其在小血管疾病中的破坏
- 批准号:
9890856 - 财政年份:2017
- 资助金额:
$ 49.03万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 49.03万 - 项目类别:
Research Grant