Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT

集成人工智能以优化心脏 PET/CT 分析

基本信息

  • 批准号:
    10593858
  • 负责人:
  • 金额:
    $ 73.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-22 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Coronary artery disease (CAD) is the leading cause of death and disability in the US and globally. The epidemic of obesity, diabetes, and cardiometabolic disease is changing the nature of CAD, with diffuse and microvascular disease emerging as key drivers of adverse outcomes. Radionuclide myocardial perfusion imaging is the most widely used modality for CAD assessment and is still primarily performed with SPECT. But SPECT evaluates only relative perfusion and is inherently insensitive in the setting of diffuse or microvascular disease. PET, with its unique ability to accurately quantify absolute myocardial blood flow, allows robust detection of obstructive CAD, diffuse atherosclerosis, balanced ischemia, and coronary microvascular dysfunction. Cardiac PET is also always obtained with additional chest CT for attenuation correction purposes. However, this modality requires a high level of on-site technical expertise to maximize its broad capabilities. We have applied highly efficient, image-based artificial intelligence (AI) approaches extensively to SPECT and CT, demonstrating improved diagnostic accuracy and risk stratification. These tools can be harnessed to enhance the utility of cardiac PET/CT. We propose to efficiently translate the latest AI advances and our recent SPECT developments to fully automate cardiac PET/CT analysis, including novel tools for quality control, high- performance image segmentation, new quantitative variables, and direct outcome prediction from images, using PET/CT data from multiple centers. The overall aim is to develop is to develop practical AI algorithms for comprehensive cardiac PET/CT analysis and to validate them in a multi-center setting. For this work, we propose the following 3 specific aims: (1) To develop and test automated end-to-end PET quantification, (2) To develop and test automated end-to-end chest CT quantification, (3) To develop and validate explainable AI models for enhanced patient assessment from images and clinical data, employing latest advances in survival analysis, supervised and unsupervised learning, and knowledge transfer. This research will result in personalized tools, which will improve the accuracy of patient assessment by PET/CT beyond what is possible by the current practice of subjective interpretation and mental integration of diverse data. Explainable methods combining image and clinical data to make AI conclusions more tangible will allow clinical adoption of this technology. The new tools can dramatically simplify PET/CT protocols, reduce subjectivity, reduce burden on the physicians, and maximize the information derived from the multimodal scans. They will fit directly into existing workflows, facilitating deployment in diverse clinical settings. The new AI methods for image analysis and explainable integration of multimodality data will generalize to other diseases and problems in biomedical imaging.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcelo F DI CARLI其他文献

Marcelo F DI CARLI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcelo F DI CARLI', 18)}}的其他基金

Integrating Artificial Intelligence for Optimal Analysis of CardiacPET/CT
集成人工智能以优化心脏 PET/CT 分析
  • 批准号:
    10708921
  • 财政年份:
    2022
  • 资助金额:
    $ 73.71万
  • 项目类别:
Coronary Flow Reserve to Assess Cardiovascular Inflammation (CIRT-CFR)
冠状动脉血流储备评估心血管炎症 (CIRT-CFR)
  • 批准号:
    9232196
  • 财政年份:
    2016
  • 资助金额:
    $ 73.71万
  • 项目类别:
Coronary Flow Reserve to Assess Cardiovascular Inflammation (CIRT-CFR)
冠状动脉血流储备评估心血管炎症 (CIRT-CFR)
  • 批准号:
    9082786
  • 财政年份:
    2016
  • 资助金额:
    $ 73.71万
  • 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
  • 批准号:
    8699254
  • 财政年份:
    2010
  • 资助金额:
    $ 73.71万
  • 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
  • 批准号:
    9301342
  • 财政年份:
    2010
  • 资助金额:
    $ 73.71万
  • 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
  • 批准号:
    10454111
  • 财政年份:
    2010
  • 资助金额:
    $ 73.71万
  • 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
  • 批准号:
    8286236
  • 财政年份:
    2010
  • 资助金额:
    $ 73.71万
  • 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
  • 批准号:
    7943579
  • 财政年份:
    2010
  • 资助金额:
    $ 73.71万
  • 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
  • 批准号:
    8488465
  • 财政年份:
    2010
  • 资助金额:
    $ 73.71万
  • 项目类别:
Noninvasive Cardiovascular Imaging Research Training Program
无创心血管影像研究培训计划
  • 批准号:
    10641765
  • 财政年份:
    2010
  • 资助金额:
    $ 73.71万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.71万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 73.71万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
    Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
    Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
    Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
  • 批准号:
    2872725
  • 财政年份:
    2023
  • 资助金额:
    $ 73.71万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了