Supplement: SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research

补充:SCH:为人工智能驱动的帕金森病研究提供数据外包和共享

基本信息

  • 批准号:
    10594084
  • 负责人:
  • 金额:
    $ 28.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-03 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Supplement Project Summary What does Project R01 LM014027-01 do? Artificial intelligence holds the promise of transforming data-driven biomedical research and computational health informatics for more accurate diagnosis and better treatment at lower cost. In the meantime, modern digital and mobile technologies make it much easier to collect information from patients in large scale. While “big” medical data offers unprecedented opportunities of building deep-learning artificial neural network (ANN) models to advance the research of complex diseases such as Parkinson's disease (PD), it also presents unique challenges to patient data privacy. This project will develop novel data masking technologies based on randomized orthogonal transformation to enable AI-computation outsourcing and data sharing, with the following two aims: 1) Perform two experimental studies of training ANN models with data masking in the HiperGator cloud for PD prediction and Parkinsonism diagnosis; 2) establish the theoretical foundation on data privacy, inference accuracy, and training performance of the ANN models used in the experimental studies. Why do we make this supplement request? Dr. Aidong Adam Ding from Northeastern University visited us in Summer 2022. Together we produced a manuscript that expanded our data masking method with noise addition to achieve differential privacy (DiP) when we outsource medical data to the cloud for AI model training. This is a significant advance that goes beyond the originally proposed technical approaches; yet it remains in the scope of the research plan. Therefore, we request a supplement project that utilizes our new DiP method to transform two PD data sets for guaranteed differential privacy and make them AI-ready for cloud-based machine learning studies. Our analysis has showed that the new DiP method could be improved with much less noise addition, which would result in much better model accuracy. We plan to bring Dr. Ge Han from Towson University into the team. His expertise in random forests and perturbations could help us reduce the noise. The proposed supplement tasks for the two aims of Project R01 LM014027-01 are below. Supplement Task to Aim 1: Produce two sharable PD data sets with differential privacy and perform a machine learning case study on the DiP-protected data for AI-readiness evaluation. We will process our two PD data sets with the new DiP method to ensure differential privacy. We will perform an experimental study over the two data sets to evaluate PD-diagnosis models learned from the DiP-protected data and to quantify the tradeoff between model accuracy and privacy protection, which helps us determine the best configuration of the privacy-protected data that we will share with the community. Supplement Task to Aim 2: Improve the DiP Method and Enhance the Quality of AI-Ready, DiP- Protected Data. We will refine the DiP method for less noise addition, which helps improve the accuracy of ML/AI models trained from the DiP-protected data.
补充项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shigang Chen其他文献

Shigang Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shigang Chen', 18)}}的其他基金

SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research
SCH:为人工智能驱动的帕金森病研究提供数据外包和共享
  • 批准号:
    10480884
  • 财政年份:
    2021
  • 资助金额:
    $ 28.13万
  • 项目类别:
SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research
SCH:为人工智能驱动的帕金森病研究提供数据外包和共享
  • 批准号:
    10435804
  • 财政年份:
    2021
  • 资助金额:
    $ 28.13万
  • 项目类别:
SCH: Enabling Data Outsourcing and Sharing for AI-powered Parkinson's Research
SCH:为人工智能驱动的帕金森病研究提供数据外包和共享
  • 批准号:
    10622545
  • 财政年份:
    2021
  • 资助金额:
    $ 28.13万
  • 项目类别:

相似海外基金

DIVISION OF CANCER CONTROL AND POPULATION SCIENCES (DCCPS) BIOMEDICAL COMPUTING SUPPORT SERVICES_ Moonshot Support
癌症控制和人口科学部 (DCCPS) 生物医学计算支持服务_ Moonshot 支持
  • 批准号:
    10975530
  • 财政年份:
    2023
  • 资助金额:
    $ 28.13万
  • 项目类别:
DIVISION OF CANCER CONTROL AND POPULATION SCIENCES (DCCPS) BIOMEDICAL COMPUTING SUPPORT SERVICES
癌症控制和人口科学部 (DCCPS) 生物医学计算支持服务
  • 批准号:
    10929019
  • 财政年份:
    2023
  • 资助金额:
    $ 28.13万
  • 项目类别:
BIOMEDICAL COMPUTING, ANALYTIC, AND DATA MANAGEMENT SERVICESTASK ORDER TITLE: NCCIH INTEGRATED INFORMATION SERVICES PROGRAM
生物医学计算、分析和数据管理服务任务订单名称:NCCIH 综合信息服务计划
  • 批准号:
    10709355
  • 财政年份:
    2022
  • 资助金额:
    $ 28.13万
  • 项目类别:
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2022
  • 资助金额:
    $ 28.13万
  • 项目类别:
    Discovery Grants Program - Individual
BIOMEDICAL COMPUTING, ANALYTIC, AND DATA MANAGEMENT SERVICESTASK ORDER TITLE: NCCIH INTEGRATED INFORMATION SERVICES PROGRAM
生物医学计算、分析和数据管理服务任务订单名称:NCCIH 综合信息服务计划
  • 批准号:
    10894363
  • 财政年份:
    2022
  • 资助金额:
    $ 28.13万
  • 项目类别:
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2021
  • 资助金额:
    $ 28.13万
  • 项目类别:
    Discovery Grants Program - Individual
BIOMEDICAL COMPUTING SERVICES FOR NCI DCCPS
NCI DCCPS 的生物医学计算服务
  • 批准号:
    10658959
  • 财政年份:
    2020
  • 资助金额:
    $ 28.13万
  • 项目类别:
BIOMEDICAL COMPUTING SERVICES FOR NCI DCCPS
NCI DCCPS 的生物医学计算服务
  • 批准号:
    10444966
  • 财政年份:
    2020
  • 资助金额:
    $ 28.13万
  • 项目类别:
BIOMEDICAL COMPUTING SERVICES FOR NCI DCCPS
NCI DCCPS 的生物医学计算服务
  • 批准号:
    10282865
  • 财政年份:
    2020
  • 资助金额:
    $ 28.13万
  • 项目类别:
Learning Algorithms for Predictive Modeling in Biomedical Computing: Methods and Applications
生物医学计算中预测建模的学习算法:方法与应用
  • 批准号:
    RGPIN-2020-07117
  • 财政年份:
    2020
  • 资助金额:
    $ 28.13万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了