Contextualizing and Addressing Population-Level Bias in Social Epigenomics Study of Asthma in Childhood
儿童哮喘社会表观基因组学研究中的背景分析和解决人群水平偏差
基本信息
- 批准号:10593797
- 负责人:
- 金额:$ 30.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-26 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:10 year old15 year oldAccident and Emergency departmentAccountingAddressAffectAfrican AmericanAfrican American populationAgeAreaArtificial IntelligenceAsthmaAwardAwarenessBiologicalBlack PopulationsCensusesCharacteristicsChildChildhoodChronicChronic DiseaseChronic stressClinicalClinical DataClinical ResearchCohort StudiesCommunitiesComplexDataData AnalysesData CollectionData SetDetectionDiseaseElementsEmergency department visitEnsureEnvironmental Risk FactorEpigenetic ProcessExposure toFAIR principlesFamilyFemaleFunctional disorderFundingFutureGeneticGenomeGenomicsGeographic LocationsGeographyHispanic PopulationsHospitalizationIndividualInstitutionInsuranceLabelLearningLinkLocationMachine LearningMeasuresMethodsModelingModificationMorbidity - disease rateNatureNot Hispanic or LatinoOutcomeParentsParticipantPathway interactionsPatientsPhenotypePopulationPrevalencePrivatizationPsychosocial FactorPsychosocial StressQuality of lifeRaceReadinessResearchResearch PersonnelResolutionRhinovirusRhinovirus infectionRiskSamplingSelection BiasSeveritiesSocial EnvironmentSocioeconomic FactorsStandardizationStressSubgroupSurveysSymptomsTechniquesTestingTimeUnited StatesUnited States National Institutes of HealthWeightadverse childhood eventsasthma exacerbationasthmaticbench to bedsideblindcohortdata qualitydata reusedesignepigenomeepigenomicsexperiencehealth disparity populationsimprovedinclusion criteriainsightlarge scale datamachine learning modelmarginalized communitymortalitynovelprospectivepsychosocialracial and ethnic disparitiesrecruitresponsesocialsocial determinantssocial health determinantssocial influencesociodemographicssocioeconomicsstatisticsstressortool
项目摘要
SUMMARY
6.1 million children in the US currently suffer from asthma, making it the most common chronic disease
experienced during childhood. Significant racial and ethnic disparities exist with African American (AA) children
being 8 times more likely to die of asthma relative to non-Hispanic white children. Genetic, environmental, and
psychosocial factors are believed to jointly cause the disease by affecting biological pathways related to asthma
pathophysiology. Within our parent R01 award (5R01MD015409) – abbreviated as the “Stress, Epigenome and
Asthma” (SEA) study, we hypothesize that exposure to psychosocial stress in childhood may act at a mechanistic
(biological) level impacting the function of our genome by epigenetic modifications. To test our hypothesis, we
are collecting large amounts of data in a prospective social epigenomics study of asthmatic AA children/families
including high-resolution epigenetic profiles, comprehensive social determinants of health (SDOH), and chronic
stress information. While we propose within the parent award to make the ‘omics’ dataset ready for downstream
AI/ML approaches we recognize the need to also prepare our SDOH and chronic stress data for similar
applications which is however outside of the scope of the parent award. Specifically, we argue the SEA study
data will greatly benefit from use of AI/ML techniques such as ensemble models that are capable of naively
capturing differential outcomes across combinations of features. However, given that exposure to chronic
stressors is tied to a child’s social environment, to develop reliable models will require significant efforts to
prepare and contextualize the collected data. We hypothesize this can be accomplished through the linking of
collected social and clinical data with disparate population level datasets. Our supplement will address two aims:
1) We will develop novel quantitative measures to define the representativeness of study participant data. By
utilizing publicly available population-level data (e.g., Census data) we will develop a framework to compare the
sociodemographic profile of study participations against an expected distribution of individuals in a geographic
reference area. And, by doing so, identify subgroups that may misaligned to the community on which results are
expected to generalize. By further linking this alignment to data quality measures (e.g., missingness), we can
create a standardized tool to convey the dataset’s intrinsic biases on population subsets to aid in designing
analyses and interpreting AI/ML model results; and 2) We will extend traditional AI/ML imputation preprocessing
methods to account for socioeconomic factors. Understanding that chronic stress is deeply interconnected with
children’s social environment and that sampling is not balanced by geographic region, current imputation
estimates for data in subgroups with a high degree of missingness, would be primarily driven by relationships
found in cohorts with more complete information. We hypothesize, that population-level data can be integrated
into novel weighting techniques for multiple imputation models to better account for socioeconomic similarity of
patients. In turn, providing more precise estimates of missing data for smaller population subgroups.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elin Grundberg其他文献
Elin Grundberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elin Grundberg', 18)}}的其他基金
Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
- 批准号:
10053566 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
- 批准号:
10247824 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Ethical Implementation of Social Epigenomics Research on Asthma in a Health Disparity Population
健康差异人群哮喘社会表观基因组学研究的伦理实施
- 批准号:
10593404 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
- 批准号:
10610862 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Understanding Mechanisms Underlying Chronic Stress-Induced Asthma in Children by Population and Single-Cell Epigenomics Approaches
通过群体和单细胞表观基因组学方法了解儿童慢性压力诱发哮喘的机制
- 批准号:
10393705 - 财政年份:2020
- 资助金额:
$ 30.19万 - 项目类别:
Environmental Exposures, AHR Activation, and Placental Origins of Development
环境暴露、AHR 激活和胎盘发育起源
- 批准号:
10413959 - 财政年份:2018
- 资助金额:
$ 30.19万 - 项目类别:
Environmental Exposures, AHR Activation, and Placental Origins of Development
环境暴露、AHR 激活和胎盘发育起源
- 批准号:
10176489 - 财政年份:2018
- 资助金额:
$ 30.19万 - 项目类别:
相似海外基金
Research on the legal position of 'U-25 people'-autonomy at the 15-year-old, help to the 25-five?years-old
“U-25人”的法律地位研究——15岁的自主权,对25岁五岁的帮助
- 批准号:
20530068 - 财政年份:2008
- 资助金额:
$ 30.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EFFECT OF HYDRATION STATUS ON BASKETBALL PERFORMANCE: 12-15 YEAR-OLD BOYS
水分状态对篮球表现的影响:12-15 岁男孩
- 批准号:
7378538 - 财政年份:2006
- 资助金额:
$ 30.19万 - 项目类别:
EFFECT OF HYDRATION STATUS ON BASKETBALL PERFORMANCE: 12-15 YEAR-OLD BOYS
水分状态对篮球表现的影响:12-15 岁男孩
- 批准号:
7203587 - 财政年份:2005
- 资助金额:
$ 30.19万 - 项目类别:
Replacement of a 15 Year-Old X-ray Microanalysis Unit
更换已有 15 年历史的 X 射线微量分析装置
- 批准号:
9313813 - 财政年份:1994
- 资助金额:
$ 30.19万 - 项目类别:
Standard Grant