Cross-Feature Correlations Define Cell Types, Asymmetric Cell Division, and Variant Networks

跨特征相关性定义细胞类型、不对称细胞分裂和变体网络

基本信息

  • 批准号:
    10595102
  • 负责人:
  • 金额:
    $ 10.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-07 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Research: Here we aim to use cross-feature correlations in three different contexts in single cell omics to (Aim1) solve critical issues in single cell RNAseq (scRNAseq) cell type identification, (Aim2) discover subtypes of asymmetric cell division (ACD) by the creation of a new genomics technology [single cell ACD transcriptomics (scACDt)], and (Aim3) create an anthology of scRNAseq co-expression networks across human tissues. (Aim1) We have found that status quo cell type identification algorithms (1) cannot identify immortalized cell lines as a single cell type, and (2) have no unbiased mechanism to prevent a user from repeatedly ‘sub-clustering’ populations of interest, which can result in false discoveries. These problems have immediate implications for the analysis of all scRNAseq, thus requiring an urgent resolution. We have created an anti-correlation-based algorithm that appears to pass these tests, but must expand our benchmarking with more simulation studies, more competing algorithms, and real-world datasets. (Aim2) Similar to Aim1, we anticipate that anti-correlated vectors will define subtypes of ACD. Using an opto-electric nano-fluidic chip, we will track daughter cells by microscopy and pair them with their transcriptomes by scRNAseq following cell division to calculate the asymmetry in mRNA segregation between daughter cells. We have previously performed all needed functions to achieve these goals; here we propose to merge these protocols to create a new genomics assay (scACDt). (Aim3) Lastly, we will use cross-feature correlations to build consensus tissue and pan-tissue co-expression networks from publicly available human scRNAseq datasets. This will enable functional annotation of the entire NHGRI GWAS catalogue using graph theoretic approaches from gene-gene correlations. Career Goals: My future laboratory will use transdisciplinary approaches to develop new genomic technologies and algorithms to uncover the mechanisms by which the genome, integrated with environmental input, results in a diverse array of cell types and expression programs. Through integrated data science, algorithm development, and basic molecular biology, my lab will generate data-driven hypotheses and validate them at the bench. These approaches will broadly impact all of biology rather than on a single disease. Lastly, an important goal is to create a socio- economic and geographically diverse lab-environment. The training and aims I propose here will guide me to these goals. Environment: The Icahn School of Medicine at Mount Sinai (ISMMS) has an established systems biology track record with access to and expertise in massively scalable computation, which will be important for Aims1&3. Additionally, ISMMS is the only academic institute to own the Beacon platform let alone have the expertise to operate this instrument for Aim2. Through our collaborations within the institute, our team at Mount Sinai is uniquely situated to (Aim1) create innovative algorithms to identify cell types from scRNAseq, (Aim2) begin the scACDt field, (Aim3) create an anthology of scRNAseq co-expression networks across human tissues.
项目总结/文摘

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Migration through a Major Andean Ecogeographic Disruption as a Driver of Genetic and Phenotypic Diversity in a Wild Tomato Species.
  • DOI:
    10.1093/molbev/msab092
  • 发表时间:
    2021-07-29
  • 期刊:
  • 影响因子:
    10.7
  • 作者:
    Landis JB;Miller CM;Broz AK;Bennett AA;Carrasquilla-Garcia N;Cook DR;Last RL;Bedinger PA;Moghe GD
  • 通讯作者:
    Moghe GD
Allergen recognition by specific effector Th2 cells enables IL-2-dependent activation of regulatory T-cell responses in humans.
特定效应 Th2 细胞对过敏原的识别使得人类调节性 T 细胞反应能够依赖 IL-2 激活。
  • DOI:
    10.1111/all.15512
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Lozano-Ojalvo,Daniel;Tyler,ScottR;Aranda,CarlosJ;Wang,Julie;Sicherer,Scott;Sampson,HughA;Wood,RobertA;Burks,AWesley;Jones,StacieM;Leung,DonaldYM;deLafaille,MariaCurotto;Berin,MCecilia
  • 通讯作者:
    Berin,MCecilia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott R Tyler其他文献

Scott R Tyler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott R Tyler', 18)}}的其他基金

Cross-Feature Correlations Define Cell Types, Asymmetric Cell Division, and Variant Networks
跨特征相关性定义细胞类型、不对称细胞分裂和变体网络
  • 批准号:
    10040076
  • 财政年份:
    2020
  • 资助金额:
    $ 10.87万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 10.87万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了