Cross-Feature Correlations Define Cell Types, Asymmetric Cell Division, and Variant Networks

跨特征相关性定义细胞类型、不对称细胞分裂和变体网络

基本信息

  • 批准号:
    10040076
  • 负责人:
  • 金额:
    $ 14.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-07 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Research: Here we aim to use cross-feature correlations in three different contexts in single cell omics to (Aim1) solve critical issues in single cell RNAseq (scRNAseq) cell type identification, (Aim2) discover subtypes of asymmetric cell division (ACD) by the creation of a new genomics technology [single cell ACD transcriptomics (scACDt)], and (Aim3) create an anthology of scRNAseq co-expression networks across human tissues. (Aim1) We have found that status quo cell type identification algorithms (1) cannot identify immortalized cell lines as a single cell type, and (2) have no unbiased mechanism to prevent a user from repeatedly ‘sub-clustering’ populations of interest, which can result in false discoveries. These problems have immediate implications for the analysis of all scRNAseq, thus requiring an urgent resolution. We have created an anti-correlation-based algorithm that appears to pass these tests, but must expand our benchmarking with more simulation studies, more competing algorithms, and real-world datasets. (Aim2) Similar to Aim1, we anticipate that anti-correlated vectors will define subtypes of ACD. Using an opto-electric nano-fluidic chip, we will track daughter cells by microscopy and pair them with their transcriptomes by scRNAseq following cell division to calculate the asymmetry in mRNA segregation between daughter cells. We have previously performed all needed functions to achieve these goals; here we propose to merge these protocols to create a new genomics assay (scACDt). (Aim3) Lastly, we will use cross-feature correlations to build consensus tissue and pan-tissue co-expression networks from publicly available human scRNAseq datasets. This will enable functional annotation of the entire NHGRI GWAS catalogue using graph theoretic approaches from gene-gene correlations. Career Goals: My future laboratory will use transdisciplinary approaches to develop new genomic technologies and algorithms to uncover the mechanisms by which the genome, integrated with environmental input, results in a diverse array of cell types and expression programs. Through integrated data science, algorithm development, and basic molecular biology, my lab will generate data-driven hypotheses and validate them at the bench. These approaches will broadly impact all of biology rather than on a single disease. Lastly, an important goal is to create a socio- economic and geographically diverse lab-environment. The training and aims I propose here will guide me to these goals. Environment: The Icahn School of Medicine at Mount Sinai (ISMMS) has an established systems biology track record with access to and expertise in massively scalable computation, which will be important for Aims1&3. Additionally, ISMMS is the only academic institute to own the Beacon platform let alone have the expertise to operate this instrument for Aim2. Through our collaborations within the institute, our team at Mount Sinai is uniquely situated to (Aim1) create innovative algorithms to identify cell types from scRNAseq, (Aim2) begin the scACDt field, (Aim3) create an anthology of scRNAseq co-expression networks across human tissues.
项目摘要/摘要 研究:在这里,我们的目标是在单细胞组学的三个不同背景下使用跨特征相关性来(Aim1) 解决单细胞RNAseq(ScRNAseq)细胞类型识别中的关键问题,(AIM2)发现 通过创造一种新的基因组学技术实现的不对称细胞分裂(ACD) (ScACDt)]和(Aim3)创建了人体组织中scRNAseq共表达网络的集合。(Aim1) 我们发现,现有的细胞类型识别算法(1)不能将永生化细胞系识别为 单一小区类型,以及(2)没有无偏见的机制来防止用户重复地‘子聚类’ 这可能会导致错误的发现。这些问题直接影响到 对所有scRNAseq的分析,因此需要紧急解决。我们已经创建了一个基于反相关性的 算法似乎通过了这些测试,但必须通过更多的模拟研究来扩展我们的基准测试, 更多相互竞争的算法和真实世界的数据集。(AIM2)类似于Aim1,我们预计反相关 向量将定义ACD的亚型。使用光电纳米流体芯片,我们将通过 显微镜下观察,并在细胞分裂后通过scRNAseq将它们与转录本配对,以计算 子代细胞间mRNA分离的不对称性。我们之前已经执行了所有必要的功能来 实现这些目标;在这里,我们建议合并这些协议,以创建一种新的基因组学分析(ScACDt)。(Aim3) 最后,我们将使用跨特征相关性来构建一致的组织和泛组织共表达网络 来自公开可用的人类scRNAseq数据集。这将启用整个NHGRI的功能注释 基于基因-基因相关性的图论方法编目。职业目标:我的未来 实验室将使用跨学科方法开发新的基因组技术和算法来揭示 基因组与环境输入相结合,产生不同细胞阵列的机制 类型和表达程序。通过集成数据科学、算法开发和基础分子 生物学,我的实验室将产生数据驱动的假说,并在实验台上验证它们。这些方法将 广泛影响整个生物学,而不是单一的疾病。最后,一个重要的目标是创造一个社会-- 经济和地理上多样化的实验室环境。我在这里提出的培训和目标将指导我 这些目标。环境:西奈山伊坎医学院(ISMMS)有一套完善的体系 具有大规模可扩展计算的访问权限和专业知识的生物跟踪记录,这将对 目标1和3。此外,ISMMS是唯一拥有Beacon平台的学术机构,更不用说拥有 为AIM2操作这台仪器的专业知识。通过我们在研究所内的合作,我们在芒特山的团队 西奈半岛的独特之处在于(Aim1)创建创新的算法,从scRNAseq中识别细胞类型(AIM2) 开始scACDt领域,(Aim3)创建一本人体组织中scRNAseq共表达网络的选集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott R Tyler其他文献

Scott R Tyler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott R Tyler', 18)}}的其他基金

Cross-Feature Correlations Define Cell Types, Asymmetric Cell Division, and Variant Networks
跨特征相关性定义细胞类型、不对称细胞分裂和变体网络
  • 批准号:
    10595102
  • 财政年份:
    2020
  • 资助金额:
    $ 14.32万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 14.32万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了