A structured multi-scale dataset with prostate MRI for AI/ML research
用于 AI/ML 研究的具有前列腺 MRI 的结构化多尺度数据集
基本信息
- 批准号:10593499
- 负责人:
- 金额:$ 31.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyArtificial IntelligenceAwarenessBiopsyBiopsy SpecimenCharacteristicsClinicalClinical/RadiologicComplementConsentCore BiopsyDataData SetDevelopmentDiagnosisDiagnosticDigital Imaging and Communications in MedicineEnsureGenitourinary systemGleason Grade for Prostate CancerHistologyHistopathologyImageImage AnalysisIndolentLabelLearningLesionLinkLocationMachine LearningMagnetic Resonance ImagingMalignant neoplasm of prostateMapsMonitorMorphologic artifactsOperative Surgical ProceduresPathologicPathologistPatientsPatternPopulationProcessProstateProstatectomyQuality ControlRadical ProstatectomyReadinessRegulationReportingResearchResearch PersonnelResearch SubjectsResource SharingRoboticsSampling ErrorsScreening for Prostate CancerSlideSourceSpecimenStandardizationStructureSurgical PathologySystemTechnologyThe Cancer Imaging ArchiveTrainingUltrasonographyUncertaintyUnited States National Institutes of HealthValidationWorkbasebiomedical informaticscancer classificationclinical predictorsclinically significantcohortdata dictionarydata resourceimage guidedimprovedinterestmachine learning algorithmmachine learning methodmachine learning modelmultiscale datanovelprostate biopsyradiologistsegmentation algorithmtreatment planning
项目摘要
PROJECT SUMMARY
Magnetic resonance imaging (MRI) can provide detailed anatomical and functional information of the prostate,
but radiologists presently report on limited characteristics, often in a subjective and qualitative manner. Recent
developments in artificial intelligence and machine learning (AI/ML) have demonstrated that AI/ML models can
complement and overcome the obstacles of current qualitative MRI interpretation by learning important
hierarchical features and subtle patterns that are predictive of clinically significant prostate cancer from the data.
A challenge in AI/ML is providing an adequate number of validated annotations (e.g., contours of prostate cancer
lesions, Gleason scores for each lesion) to ensure that "ground truth" labels are unbiased and biologically
relevant. Presently, these ground truth labels are commonly obtained from histopathologically-confirmed
findings, which can be from either biopsy or surgical specimens. However, these two histopathological findings
are often discordant. Particularly, biopsy-based histopathology results are known to be biased and/or uncertain
due to (1) interpretation variability among pathologists, (2) lesions with borderline grades, and (3) biopsy
sampling error. This discrepancy directly impacts the training, validation, and generalization of AI/ML.
To date, publicly available prostate MRI datasets exist in The Cancer Imaging Archive, but these datasets utilize
biopsy-confirmed histopathology as ground truth labels. There is a need to address the potential uncertainty and
bias in data labeling of the prostate MRI datasets. Building upon an active NIH R01 project (R01-CA248506) that
is developing novel quantitative MRI and AI/ML methods to predict clinically significant prostate cancer with
respect to surgical pathology, the objective of this project is to improve the AI/ML-readiness of the prostate MRI
data by linking multiscale information across clinical, radiologic, and pathologic data from biopsy and surgery
within the same cohort. Our research team will build an AI-ready multiscale dataset by integrating prostate MRI
with different histopathology analyses within the same cohort. This will allow direct comparison and validation of
different AI/ML models when different ground truth labels are used, providing potential ways to combine other
publicly available AI/ML datasets. The investigative team was augmented with experts in MRI-ultrasound fusion
biopsy and biomedical informatics to develop a multiscale dataset that is ready for training and validation of
AI/ML algorithms. Successful completion of the proposed work will result in: (1) a unique dataset of consented
subjects who underwent prostate MRI and both biopsies and prostatectomy; and (2) structured clinical,
radiologic, and pathologic findings shared in a standardized manner with a clearly defined data dictionary. This
augmented population and toolkit will enable further refinement and improvements in AI/ML models for image to
histopathology correlation and temporal monitoring of prostate cancer in patients on active surveillance.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyung Hyun Sung其他文献
Kyung Hyun Sung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyung Hyun Sung', 18)}}的其他基金
Integrating Quantitative MRI and Artificial Intelligence to Improve Prostate Cancer Classification
整合定量 MRI 和人工智能以改进前列腺癌分类
- 批准号:
10360679 - 财政年份:2020
- 资助金额:
$ 31.2万 - 项目类别:
Integrating Quantitative MRI and Artificial Intelligence to Improve Prostate Cancer Classification
整合定量 MRI 和人工智能以改进前列腺癌分类
- 批准号:
10115677 - 财政年份:2020
- 资助金额:
$ 31.2万 - 项目类别:
Integrating Quantitative MRI and Artificial Intelligence to Improve Prostate Cancer Classification
整合定量 MRI 和人工智能以改进前列腺癌分类
- 批准号:
10582590 - 财政年份:2020
- 资助金额:
$ 31.2万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 31.2万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 31.2万 - 项目类别:
Studentship