Integrating Quantitative MRI and Artificial Intelligence to Improve Prostate Cancer Classification

整合定量 MRI 和人工智能以改进前列腺癌分类

基本信息

  • 批准号:
    10360679
  • 负责人:
  • 金额:
    $ 53.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Prostate cancer (PCa) develops in sixteen percent of males and is the second leading cause of cancer-related death in men in the United States. While incidence is high, PCa presents with a wide range of aggressiveness and in many cases does not develop into life-threatening aggressive cancer. Current diagnostic strategies may fail to detect all instances of clinically significant PCa and have limited ability to accurately distinguish clinically significant from indolent PCa due to incomplete and inconsistent information. This not only subjects patients to detrimental co-morbidities including overtreatment and undertreatment, but also exacerbates already significant healthcare costs. Consequently, there is an urgent clinical need to achieve accurate detection and classification of clinically significant PCa and determine the appropriate management strategy. Multi-parametric MRI (mp-MRI), consisting of T2-weighted, diffusion-weighted, and dynamic contrast-enhanced imaging, has emerged as the preferred imaging technique for non-invasive detection and grading of PCa. However, the current standardized scoring system for mp-MRI, Prostate Imaging Reporting and Data System (PI-RADS) v2, has limited ability to distinguish between indolent and clinically significant PCa, with sensitivity and specificity in the range of 60-85%. This suboptimal accuracy and considerable variation in performance is mainly due to the fact that current PI-RADS scoring is based on qualitative analysis and subjective interpretation of mp-MRI, confounded by scanner- and patient-specific variations, including B1+ inhomogeneity, arterial input function, and susceptibility and eddy current effects. This proposal aims to overcome these critical limitations of current mp-MRI by establishing a new MRI-based artificial intelligence based on two synergistic innovations: 1) new quantitative dynamic contrast-enhanced MRI analysis techniques and diffusion-weighted MRI acquisition methods that minimize scanner- and patient-specific variations, and 2) novel multi-class deep learning models that can fully integrate the multi-labeled quantitative mp- MRI information. By leveraging the synergy between existing mp-MRI data and to-be-acquired quantitative mp- MRI data with subsequent mapping of all lesions at whole-mount histopathology, the proposed MRI-based deep learning model will be evaluated for detection and classification of clinically significant PCa, compared with the current standard-of-care, PI-RADS v2. Completion of this project will lead to the creation, clinical deployment, and pivotal validation of a new MRI-based artificial intelligence that achieves unprecedented accuracy for detection and classification of clinically significant PCa, thereby increasing confidence in separating indolent PCa from significant PCa and reducing unnecessary biopsies, undertreatment, and overtreatment.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kyung Hyun Sung其他文献

Kyung Hyun Sung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kyung Hyun Sung', 18)}}的其他基金

Integrating Quantitative MRI and Artificial Intelligence to Improve Prostate Cancer Classification
整合定量 MRI 和人工智能以改进前列腺癌分类
  • 批准号:
    10115677
  • 财政年份:
    2020
  • 资助金额:
    $ 53.41万
  • 项目类别:
A structured multi-scale dataset with prostate MRI for AI/ML research
用于 AI/ML 研究的具有前列腺 MRI 的结构化多尺度数据集
  • 批准号:
    10593499
  • 财政年份:
    2020
  • 资助金额:
    $ 53.41万
  • 项目类别:
Integrating Quantitative MRI and Artificial Intelligence to Improve Prostate Cancer Classification
整合定量 MRI 和人工智能以改进前列腺癌分类
  • 批准号:
    10582590
  • 财政年份:
    2020
  • 资助金额:
    $ 53.41万
  • 项目类别:

相似海外基金

I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
  • 批准号:
    2409130
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
  • 批准号:
    2414141
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:Cyber​​AI:利用人工智能实现智能系统的网络安全解决方案
  • 批准号:
    2349104
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
  • 批准号:
    2342384
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
  • 批准号:
    DP240100602
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
  • 批准号:
    23K22068
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
  • 批准号:
    10093095
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
  • 批准号:
    10106704
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
  • 批准号:
    MR/Y009657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.41万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了