Quantifying Bone and Skin Movement in the Residual Limb-Socket Interface of Individuals with Transtibial Amputation Using Dynamic Stereo X-Ray

使用动态立体 X 射线量化小腿截肢者残肢窝接口中的骨骼和皮肤运动

基本信息

  • 批准号:
    10597108
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Individuals with lower extremity amputation (LEA) often experience relative motion between their residual limb and the prosthetic socket, such as vertical translation and axial rotation, which can cause inefficient dynamic load transmission from the distal prosthetic components to the residual limb. This can lead to significant secondary consequences, such as pain, gait deviations, and discomfort that limit mobility and autonomy. Assessments of the relative motion between the bone and the prosthetic socket have been performed, but there is little existing data on dynamic, in vivo residual limb-socket kinematics since most investigations have been performed using non-dynamic testing protocols, static measurements, or with unvalidated surface marker-based motion capture systems. Dynamic Stereo X-ray (DSX) is an advanced imaging technology that can quantify 3D bone movement and tissue/liner deformation inside a prosthetic socket during dynamic activities. It can achieve sub-millimeter accuracy of bone pose (position and orientation) measurement during functional movements by combining 3D models derived from CT scans with movement data from biplanar x-ray video. There is a substantial gap in our understanding of the complex mechanics of the residual limb-socket interface during dynamic activities that limit the ability to improve prosthetic design. Our 4-year goals for this project are to develop the analytical tools to quantify both the dynamic, in-vivo kinematics between the residual limb and socket, as well as the mechanism of residual tissue/liner deformation. In order to validate the sensitivity of this methodology to differences in socket suspension, we will evaluate 2 suspension systems: elevated vacuum (EV) and simple suction. We hypothesize that an efficient and highly accurate method to quantify the dynamic interaction between the residual limb and prosthetic socket will be sensitive enough to distinguish between different types of prosthetic socket suspension, which will further the biomechanical understanding of socket design. To do so, the investigators will address the following aims: (1) To optimize the DSX procedural setup for the accurate tracking of the prosthetic socket, skeletal kinematics, and tissue/liner deformation; (2) To quantify the relative motion between the residual tibia and the prosthetic socket during dynamic activities; and (3) To measure the deformation of the skin and liner in the prosthetic socket during dynamic activities. To address these aims, we will first employ a cadaver study to optimize the placement of an array of radio- opaque beads and markers on the socket, liner, and skin to simultaneously assess both dynamic skeletal movement and residual tissue/liner deformation. Five cadaver limbs will be utilized in an iterative process to develop an optimal marker setup. Stance phase gait will be simulated during each DSX session to induce bone movement and skin/liner deformation. The number and placement of markers will be evaluated after each session to refine the marker placement to track skin/liner deformation and skeletal movement. Once an optimal marker setup is identified, 21 subjects with transtibial amputation will be fit with a socket capable of being suspended via both EV and traditional suction. Subjects will undergo a 4-week acclimation period and then be tested at the DSX facility at Rutgers University. DSX will be utilized to track skeletal and skin/liner motion under both suspension techniques during 3 dynamic activities: treadmill walking at self-selected speed, fast walking (10% faster), and a step-down movement. The performance of the two suspension techniques (active EV and normal suction) will be tested by quantifying the 3D bone movement of the residual tibia with respect to the prosthetic socket and quantifying liner and soft tissue deformation at the socket-residuum interface. By using the analytical tools for a highly accurate, in-vivo assessment of residual limb-socket motion, we can provide vital foundational information to aid in the development of new methods and techniques to enhance prosthetic fit that have the potential to reduce secondary physical comorbidities and degenerative changes that result from complications of poor prosthetic load transmission.
下肢截肢(LEA)患者经常经历他们之间的相对运动 残肢和假肢插座,如垂直平移和轴向旋转,会造成效率低下 从远端假体到残肢的动态载荷传递。这可能会导致 严重的次要后果,如疼痛、步态偏差和不适,限制了行动和 自主。已经完成了对骨骼和假体插座之间的相对运动的评估, 但自大多数研究以来,现有的关于动态的、活体残肢-窝运动学的数据很少 使用非动态测试协议、静态测量或使用未经验证的表面来执行 基于标记的运动捕捉系统。动态立体X射线(DSX)是一种先进的成像技术,可以 量化动态活动期间假体接受腔内的3D骨骼运动和组织/衬垫变形。 它可以达到亚毫米精度的骨骼姿势(位置和方向)的测量在功能 通过将来自CT扫描的3D模型与来自双平面X光视频的运动数据相结合来实现运动。 我们对残肢窝的复杂机制的理解有很大的差距 动态活动时的界面,限制了改进假肢设计的能力。我们对此的四年目标 项目是开发分析工具来量化动态、体内残留物之间的运动学 肢体和眼窝,以及残留组织/衬里变形的机制。为了验证灵敏度 针对这种方法在插座悬架方面的差异,我们将对两种悬架系统进行评估:真空提升 (EV)和简单的吸引术。我们假设,一种有效且高度准确的方法来量化动态 残肢和假肢插座之间的相互作用将足够敏感,以区分 不同类型的假体接受腔悬吊,将进一步加深对接受腔生物力学的理解 设计。为此,调查人员将解决以下目标:(1)优化DSX程序设置,以 准确跟踪假体窝、骨骼运动学和组织/衬垫变形;(2)量化 在动态活动中,剩余胫骨与假体窝之间的相对运动;以及(3) 在动态活动中测量假体承窝中皮肤和衬里的变形。 为了达到这些目标,我们将首先利用身体研究来优化无线电阵列的放置- 眼窝、衬里和皮肤上的不透明珠子和标记,以同时评估两个动态骨骼 运动和残存组织/衬里变形。将在一个迭代过程中利用五个身体肢体来 开发一种最佳的标记设置。将在每个DSX会话期间模拟站立阶段步态,以诱导骨骼 移动和蒙皮/衬垫变形。标记的数量和位置将在每次测试后进行评估 会话以优化标记放置,以跟踪蒙皮/衬垫变形和骨骼移动。曾经是最理想的 标记设置被确定,21名经胫骨截肢的受试者将安装一个能够 通过电动吸引器和传统吸引器悬挂。受试者将经历为期4周的适应期,然后 在罗格斯大学的DSX设施中进行了测试。将使用DSX跟踪骨骼和蒙皮/衬里的运动 三种动态活动中的两种悬挂技术:以自行选择的速度在跑步机上行走,快速行走 (速度快10%),以及一步一步的动作。两种悬架技术(主动电动汽车和电动汽车)的性能 正常吸力)将通过量化剩余胫骨相对于 假体窝和定量衬里和软组织变形在窝-残留物界面。 通过使用分析工具对残馀肢体-插座运动进行高精度的体内评估,我们 可以提供重要的基础信息,帮助开发新的方法和技术,以增强 假体适合性有可能减少继发性物理并存和退行性变化, 由假体负荷传递不良的并发症所致。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Maikos其他文献

Jason Maikos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Maikos', 18)}}的其他基金

Effect of Prosthetic Socket Design on Residual Limb Motion using Biplane X-Ray Video
使用双平面 X 射线视频研究假肢接受腔设计对残肢运动的影响
  • 批准号:
    9920006
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:

相似海外基金

CAREER: Helping or hindering? Determining the influence of repetitive marine heatwaves on acclimatization of reef-building corals across biological scales
事业:帮助还是阻碍?
  • 批准号:
    2237658
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Facility improvements to establish capacity for coral reef resilience research assessing genetic adaptation and physiological acclimatization
改进设施以建立评估遗传适应和生理适应能力的珊瑚礁复原力研究能力
  • 批准号:
    2147677
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Neural and muscular aspects of fatigue and long-term acclimatization to high altitude.
疲劳和长期适应高海拔的神经和肌肉方面。
  • 批准号:
    RGPAS-2020-00038
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Neural and muscular aspects of fatigue and long-term acclimatization to high altitude.
疲劳和长期适应高海拔的神经和肌肉方面。
  • 批准号:
    RGPIN-2020-06977
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adaptation and acclimatization to high altitude in rodents.
啮齿动物对高海拔的适应和适应。
  • 批准号:
    RGPIN-2019-06495
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
The role of metabolic-epigenetics in acclimatization to thermal stress in reef-building corals
代谢表观遗传学在造礁珊瑚适应热应激中的作用
  • 批准号:
    545967-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The role of metabolic-epigenetics in acclimatization to thermal stress in reef-building corals
代谢表观遗传学在造礁珊瑚适应热应激中的作用
  • 批准号:
    545967-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Neural and muscular aspects of fatigue and long-term acclimatization to high altitude.
疲劳和长期适应高海拔的神经和肌肉方面。
  • 批准号:
    RGPIN-2020-06977
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
RII Track-4: Surviving climate change: The role of adaptation and acclimatization in tropical corals
RII Track-4:应对气候变化:适应和适应环境在热带珊瑚中的作用
  • 批准号:
    2032919
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Neural and muscular aspects of fatigue and long-term acclimatization to high altitude.
疲劳和长期适应高海拔的神经和肌肉方面。
  • 批准号:
    RGPAS-2020-00038
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了