Neuro-immune interactions at the intestinal surface
肠道表面的神经免疫相互作用
基本信息
- 批准号:10598074
- 负责人:
- 金额:$ 51.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAfferent NeuronsBacterial GastroenteritisBacterial InfectionsBody SurfaceCell DeathCell SeparationCellsCentral Nervous System DiseasesClinicalCuesDataDiseaseEnteralEnvironmentExposure toFunctional Gastrointestinal DisordersGastrointestinal MotilityGastrointestinal tract structureGene ExpressionGeneticHumanImageImmuneImmune systemImpairmentInfectionInflammasomeInflammationInflammatory Bowel DiseasesInjuryInterneuronsInterstitial Cell of CajalIntestinesInvadedIrritable Bowel SyndromeMacrophageMaintenanceModelingMolecularMotor NeuronsMusMyeloid CellsMyenteric PlexusNervous SystemNeurogliaNeuroimmuneNeuronsPathogenicityPathologyPathway interactionsPeristalsisPersonsPhysiological ProcessesPopulationPreventionProcessReceptor SignalingRecording of previous eventsRecoveryReportingResistanceRoleSalmonella infectionsSpinal CordSurfaceTissuesbeta-2 Adrenergic Receptorsdietaryenteric infectionenteric pathogengain of functiongastrointestinalgenetic approachgut inflammationgut microbiotahelminth infectionloss of functionmicrobialmicrobiomemicrobiotamicroorganism antigenmotility disordernerve damagenervous system disorderneuroinflammationneuron losspathogenpreventprogramsresponsesecondary infectiontranscriptomics
项目摘要
Project Summary
The gastrointestinal (GI) tract comprises the largest environmental interface of the body; its immune system is
posed with the unique challenge of maintaining tolerance to dietary and microbial antigens while remaining
poised to protect against pathogen invasion. Coordinated resistance and tolerance mechanisms serve to prevent
pathogenic dissemination, limit excessive GI damage, and initiate recovery responses induced by pathogenic
burden or injury. The GI tract hosts as many neurons (enteric-associated neurons, EANs) as the spinal cord and
more immune cells than all other compartments together. EANs include sensory neurons, interneurons, and
motor neurons with cell bodies within (intrinsic) or outside the intestine (extrinsic), which control a variety of
functions within the GI tract. EANs are often targeted by enteric pathogens, resulting in functional gastrointestinal
disorders post pathogen clearance. The clinical presentations of post-infectious enteric neuronal damage include
unresolved low-grade intestinal inflammation, gastrointestinal motility impairment, and nerve damage.
Nevertheless, the underlying mechanisms involved in infection–induced neuronal damage are incompletely
understood. Our recent data indicates that murine enteric infection results in a rapid and persistent loss of iEANs,
which is associated with prolonged gastrointestinal changes including intestinal dysmotility. However, infection
history and microbiota composition can prevent iEAN loss or accelerate iEAN recovery, respectively; findings
that may lead to a better understanding of human post-infectious IBS and additional disorders associated with
EAN damage during inflammation. Imaging analyses suggested a subtype–specific neuronal loss upon
Salmonella infection, and transcriptomics and genetic approaches indicated an iEAN cell death mechanism that
is dependent on components of the inflammasome pathway. Depletion of intestinal muscularis macrophages
(MMs), located in close proximity to enteric neurons, as well as targeting of β2-AR on myeloid cells, resulted in
enhanced infection-induced neuronal loss, suggesting a functional role for a MM tissue protective program
induced upon infection. Our observations suggest a functional role for neuron–macrophage interactions in
limiting infection-induced neuronal damage or accelerating neuronal recovery, supporting the significance and
impact of this proposal. We will characterize mechanisms underlying neuronal cell death post enteric infection
with different pathogens (Aim 1). We will also to define how microbiota manipulations can rescue neuronal death
post infection, possibly defining a role for specific bacterial species in this process (Aim 2). Finally, we will
investigate the cellular and molecular immune mechanisms regulating neuronal loss during heterologous
secondary infections (Aim3). By utilizing imaging, cell sorting–independent transcriptomics, single-cell
approaches and genetic gain– and loss–of-function approaches, this proposal aims to characterize cellular and
molecular components of neuro-immune crosstalk following enteric infections.
项目摘要
胃肠道(GI)是人体最大的环境界面,其免疫系统是
面临着一个独特的挑战,即在保持对饮食和微生物抗原的耐受性的同时
做好防御病原体入侵的准备。协调的抵抗和容忍机制有助于防止
病原传播,限制过度的胃肠道损害,并启动由病原体引起的恢复反应
负担或伤害。胃肠道容纳的神经元(肠相关神经元,EANS)与脊髓和
比所有其他隔室加在一起的免疫细胞还要多。Eans包括感觉神经元、中间神经元和
运动神经元,其胞体在肠内(内在)或肠外(外在),它控制着各种
胃肠道内的功能。EAN通常是肠道病原体的靶标,导致胃肠道功能正常。
病原体清除后出现紊乱。感染后肠神经损伤的临床表现包括
未解决的低度肠炎、胃肠动力障碍和神经损伤。
然而,感染引起的神经元损伤的潜在机制还不完全。
明白了。我们最近的数据表明,小鼠肠道感染会导致iEANs的快速和持续丢失,
这与长时间的胃肠道变化有关,包括肠道运动障碍。然而,感染
历史和微生物群组成分别可以防止碘损失或加速碘恢复;研究结果
这可能有助于更好地了解人类感染后IBS和与以下相关的其他疾病
炎症过程中的损伤。影像分析显示亚型特异性神经元丢失。
沙门氏菌感染,转录学和遗传学方法表明,一种新的细胞死亡机制
依赖于炎症体途径的成分。肠道巨噬肌细胞的耗竭
(MMS),位于肠神经元附近,以及将β2-AR靶向于髓系细胞,导致
增强感染诱导的神经元丢失,表明多发性骨髓瘤组织保护计划的功能作用
在感染时诱导的。我们的观察表明,神经元-巨噬细胞相互作用在
限制感染引起的神经元损伤或加速神经元恢复,支持其意义和
这项提议的影响。我们将描述肠道感染后神经细胞死亡的机制。
不同病原体(目标1)。我们还将定义微生物区系操作如何挽救神经元死亡
感染后,可能确定特定细菌物种在这一过程中的作用(目标2)。最后,我们会
异种神经元丢失的细胞和分子免疫调控机制研究
继发感染(Aim3)。通过利用成像、细胞分选独立的转录组学、单细胞
方法和遗传获得和功能丧失的方法,这项建议的目的是表征细胞和
肠道感染后神经免疫串扰的分子组成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel S Mucida其他文献
Daniel S Mucida的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel S Mucida', 18)}}的其他基金
Project-2:Defining the role of compartmentalized neuro-lymphatic networks on CRC and metastatic progression
项目 2:定义分区神经淋巴网络对 CRC 和转移进展的作用
- 批准号:
10493342 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
Project-2:Defining the role of compartmentalized neuro-lymphatic networks on CRC and metastatic progression
项目 2:定义分区神经淋巴网络对 CRC 和转移进展的作用
- 批准号:
10271738 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
Project-2:Defining the role of compartmentalized neuro-lymphatic networks on CRC and metastatic progression
项目 2:定义分区神经淋巴网络对 CRC 和转移进展的作用
- 批准号:
10688116 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
B cell clonal selection in gut-associated germinal centers
肠道相关生发中心的 B 细胞克隆选择
- 批准号:
10466919 - 财政年份:2020
- 资助金额:
$ 51.95万 - 项目类别:
Neuro-immune interactions at the intestinal surface
肠道表面的神经免疫相互作用
- 批准号:
10203960 - 财政年份:2020
- 资助金额:
$ 51.95万 - 项目类别:
B cell clonal selection in gut-associated germinal centers
肠道相关生发中心的 B 细胞克隆选择
- 批准号:
10684881 - 财政年份:2020
- 资助金额:
$ 51.95万 - 项目类别:
Neuro-immune interactions at the intestinal surface
肠道表面的神经免疫相互作用
- 批准号:
10378092 - 财政年份:2020
- 资助金额:
$ 51.95万 - 项目类别:
B cell clonal selection in gut-associated germinal centers
肠道相关生发中心的 B 细胞克隆选择
- 批准号:
10265570 - 财政年份:2020
- 资助金额:
$ 51.95万 - 项目类别:
Intestinal surveillance by intraepithelial lymphocytes
上皮内淋巴细胞的肠道监测
- 批准号:
9916735 - 财政年份:2017
- 资助金额:
$ 51.95万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 51.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 51.95万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 51.95万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 51.95万 - 项目类别:
Discovery Grants Program - Individual