Neuroplasticity-Based Treatment to Address State Representation Failures in People with Early Psychosis

基于神经可塑性的治疗来解决早期精神病患者的状态表征失败问题

基本信息

  • 批准号:
    10597078
  • 负责人:
  • 金额:
    $ 40.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY: PROJECT 4 The purpose of PROJECT 4 is to investigate computationally-informed precision treatments to improve two forms of state representation dysfunction in early psychosis: 1) State estimation processes at the perceptual input level, which we will target through auditory discrimination training; 2) State representation stability of auditory information, which we will target through auditory working memory training. Participants will be drawn from PROJECT 3, where they will have been assessed with behavioral and EEG-fMRI measures at baseline and after 6 months of usual care, so that their initial characteristics and clinical trajectory will be known. Participants will be stratified on an EEG index of state estimation processes (fronto-parietal theta power at DPX encoding), which we posit to be present in ~60% of subjects, and randomly assigned to one of the two training strategies. Our goal is not to perform a treatment efficacy study comparing these two interventions. Rather, we seek to use predictions derived from attractor network models to test the effects of neuroplasticity-based precision treatments targeting two distinct information processing pathologies in early psychosis, with the ultimate goal of improving state representation processes and cognition. In Aim 1, we will investigate parameter changes in the fit attractor network models in each subject group, fit to DPX and Bandit Task behavioral data immediately after training and 3 months later, and we will assess whether parameter changes reflect restorative or compensatory modifications. We will also test the hypothesis that state representation processes and cognitive performance show greater improvement in subjects who received training tailored to their state estimation parameter. In Aim 2, we will examine how specific parameter changes in attractor network models relate to neurophysiological changes in measures indexing activity timing, excitatory-inhibitory balance, and system noise, in order to identify which changes are the most predictive of improved cognition. Causal discovery analyses will be employed to identify causal relationships among computational parameters, behavioral data, neurophysiologic indices, treatment assignment, and one- year clinical trajectories.
项目总结:项目4 项目4的目的是研究计算通知的精度处理,以改进两个 早期精神病状态表征功能障碍的表现形式:1)知觉状态估计过程 输入水平,我们将通过听觉辨别训练来针对该水平;2)状态表征稳定性 听觉信息,我们将通过听觉工作记忆训练来瞄准这些信息。参赛者将被抽签 从项目3开始,他们将在基线上接受行为和EEG-fMRI测量评估 并在经过6个月的常规护理后,使其初步特征和临床轨迹 为人所知。参与者将根据状态估计过程的脑电指数(额顶区)进行分层 在DPX编码时的功率),我们假设它存在于约60%的受试者中,并随机分配给以下其中之一 两种训练策略。我们的目标不是进行一项比较这两者的治疗效果研究 干预措施。相反,我们试图使用从吸引子网络模型得出的预测来测试 基于神经可塑性的早期针对两种不同信息处理病理的精确治疗 精神病,其最终目标是改善状态表征过程和认知。 在目标1中,我们将研究Fit吸引子网络模型在每个受试组中的参数变化,Fit to DPx和Bandit在培训后立即和3个月后的任务行为数据,我们将评估 参数更改是否反映恢复性修改或补偿性修改。我们还将检验这一假设 状态表征过程和认知表现在被试中表现出更大的改善 接收针对其状态估计参数量身定做的训练。在目标2中,我们将检查具体到什么程度 吸引子网络模型中的参数变化与测量指标中的神经生理变化相关 活动时间、兴奋-抑制平衡和系统噪声,以确定哪些变化最大 预示着认知能力的改善。将使用因果发现分析来确定因果关系 在计算参数、行为数据、神经生理学指数、治疗分配和一个- 一年的临床轨迹。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophia Vinogradov其他文献

Sophia Vinogradov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophia Vinogradov', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10597066
  • 财政年份:
    2020
  • 资助金额:
    $ 40.94万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10377363
  • 财政年份:
    2020
  • 资助金额:
    $ 40.94万
  • 项目类别:
Neuroplasticity-Based Treatment to Address State Representation Failures in People with Early Psychosis
基于神经可塑性的治疗来解决早期精神病患者的状态表征失败问题
  • 批准号:
    10377368
  • 财政年份:
    2020
  • 资助金额:
    $ 40.94万
  • 项目类别:
Cognition Trajectories in Cognitive Training and Early Intervention Treatment Programs in Schizophrenia
精神分裂症认知训练和早期干预治疗方案中的认知轨迹
  • 批准号:
    9906914
  • 财政年份:
    2019
  • 资助金额:
    $ 40.94万
  • 项目类别:
Entertainment Software and Neurotherapeutics Society (ESCoNS) Conferences
娱乐软件和神经治疗学会 (ESCoNS) 会议
  • 批准号:
    8627664
  • 财政年份:
    2013
  • 资助金额:
    $ 40.94万
  • 项目类别:
Entertainment Software and Neurotherapeutics Society (ESCoNS) Conferences
娱乐软件和神经治疗学会 (ESCoNS) 会议
  • 批准号:
    9001380
  • 财政年份:
    2013
  • 资助金额:
    $ 40.94万
  • 项目类别:
Entertainment Software and Neurotherapeutics Society (ESCoNS) Conferences
娱乐软件和神经治疗学会 (ESCoNS) 会议
  • 批准号:
    9448097
  • 财政年份:
    2013
  • 资助金额:
    $ 40.94万
  • 项目类别:
Entertainment Software and Neurotherapeutics Society (ESCoNS) Conferences
娱乐软件和神经治疗学会 (ESCoNS) 会议
  • 批准号:
    8529742
  • 财政年份:
    2013
  • 资助金额:
    $ 40.94万
  • 项目类别:
Optimizing Cognitive Remediation Outcomes in Schizophrenia
优化精神分裂症的认知矫正结果
  • 批准号:
    8059729
  • 财政年份:
    2009
  • 资助金额:
    $ 40.94万
  • 项目类别:
Optimizing Cognitive Remediation Outcomes in Schizophrenia
优化精神分裂症的认知矫正结果
  • 批准号:
    7736037
  • 财政年份:
    2009
  • 资助金额:
    $ 40.94万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 40.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了