Assessing chronic pain using brain entropy mapping
使用脑熵图评估慢性疼痛
基本信息
- 批准号:10598873
- 负责人:
- 金额:$ 44.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAffectiveAnxietyAreaAttentionBig DataBiological MarkersBrainBrain imagingBrain regionChronicCognitiveComplexDataData AnalysesDiseaseEmotionalEnsureEntropyEvaluationFunctional Magnetic Resonance ImagingFutureGoalsHealthHumanImageIndividualIndividual DifferencesInterventionKnowledgeLeadLimbic SystemLocationMachine LearningMagnetic Resonance ImagingMapsMeasuresMental DepressionMethodsModelingMonitorMotorMotor CortexOpioidPainPain ResearchPain intensityPain interferencePain managementPaperParietal LobePerceptionPersonal SatisfactionPharmaceutical PreparationsPilot ProjectsPrefrontal CortexProblem SolvingProcessPsyche structureRegulationResearchResearch PersonnelRestRoleSensorimotor functionsSensorySeveritiesSpecificityStatistical Data InterpretationStressTestingTimeTranslational ResearchTraumaValidationWorkaccurate diagnosisattentional controlbasebiobankchronic painchronic pain patientcingulate cortexclinical paincognitive controlconnectomedeep learningdeep learning modeldiagnostic tooldriving forceexperiencehigh rewardhuman dataindexinginnovationmachine learning modelmultitaskneuroimagingneuromechanismneuroregulationnovelpain perceptionpain processingpredictive modelingprognostic toolsuccesstechnique developmenttherapy developmenttooltraumatic stresstreatment effect
项目摘要
Chronic pain is one of the most prevalent health problems in the world but remains poorly understood and
challenging to treat or manage. Two major barriers to progress are the unclear brain mechanism of chronic pain
and the complexity to model the multifaceted individual differences in pain experience, making it difficult to
accurately diagnose pain or monitor pain progression or treatment effects. To solve this problem, we need big
data and sophistic models. In this novel project, we will use the large (n~100000) UK Biobank (UKB) data and
deep machine learning (DL) to address the two critical problems in chronic pain research. We propose to use
resting state fMRI (rsfMRI) because pain perception and processing are ongoing in the brain which can be
characterized by the spontaneous brain activity measured by rsfMRI. We will focus on temporal coherence (TC)
of rsfMRI given its fundamental role in brain functions and our leading expertise in this research topic. We initiated
the concept of brain entropy (BEN) mapping as a tool to measure regional brain TC and our systematic work
has demonstrated the high test-retest stability, sensitivity to causal effects, specificity to focal stimulation,
different diseases, and drug states, as well as the potential as an intervention target through neuromodulations
or medication. We also showed that TC/BEN contains unique information that can not be characterized by other
neuroimaging measures. Aim 1 of this project will use TC/BEN mapping to find a potential chronic pain brain
circuit where the resting TC is positively correlated with chronic pain and individual differences of pain experience.
Aim 2 will use resting TC to build a multi-task DL-based pain prediction model. This project represents the first-
of-its-kind to study TC in chronic pain. It will bring new knowledge about chronic pain brain mechanisms (resting
TC alterations and associations) and a DL-based quantitative pain prediction model. Research rigor and
method/finding generalizability will be ensured by the use of by far the largest rsfMRI data. These high
innovations may lead to intervention targets for pain treatment or intervention development and a quantitative
tool to evaluate individual differences in pain or pain progression. Feasibility of this project is guaranteed by the
existing large data from UKB, our years of work experience in related research fields, the strong pilot data, and
the strong team expertise. Success of this pilot project will immediately lead to large size future important studies
in this new research direction.
慢性疼痛是世界上最普遍的健康问题之一,但仍然知之甚少,
难以治疗或管理。进展的两个主要障碍是不清楚慢性疼痛的大脑机制
以及模拟疼痛体验中多方面个体差异的复杂性,使得难以
准确诊断疼痛或监测疼痛进展或治疗效果。为了解决这个问题,我们需要大
数据和诡辩模型。在这个新的项目中,我们将使用大型(n~100000)英国生物银行(UKB)数据,
深度机器学习(DL)解决了慢性疼痛研究中的两个关键问题。我们建议使用
静息状态功能磁共振成像(rsfMRI),因为疼痛的感知和处理是在大脑中进行的,
其特征在于通过rsfMRI测量的自发脑活动。我们将重点关注时间相干性(TC)
rsfMRI在大脑功能中的基本作用和我们在这一研究课题中的领先专业知识。我们发起
脑熵(BEN)映射作为测量局部脑TC的工具的概念和我们的系统工作
已经证明了高的重测稳定性,对因果效应的敏感性,对局灶刺激的特异性,
不同的疾病和药物状态,以及通过神经调节作为干预靶点的潜力
或者药物治疗我们还表明,TC/BEN包含的独特信息,不能用其他方法来表征。
神经影像学测量。该项目的目标1将使用TC/BEN映射来找到潜在的慢性疼痛脑
回路,其中静息TC与慢性疼痛和疼痛体验的个体差异正相关。
Aim 2将使用静息TC构建基于多任务DL的疼痛预测模型。该项目是第一个-
研究TC在慢性疼痛中的作用。它将带来关于慢性疼痛大脑机制(休息)的新知识。
TC改变和关联)和基于DL的定量疼痛预测模型。研究的严谨性和
方法/发现的普遍性将通过使用迄今为止最大的rsfMRI数据来确保。这些高
创新可能会导致疼痛治疗或干预发展的干预目标和定量
评估疼痛或疼痛进展的个体差异的工具。本项目的可行性由
UKB现有的大量数据,我们在相关研究领域的多年工作经验,强大的试点数据,
强大的团队专业知识。这一试点项目的成功将立即导致未来大规模的重要研究
在这个新的研究方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ze Wang其他文献
Ze Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ze Wang', 18)}}的其他基金
Diversity Supplement to Brain entropy mapping in Alzheimer's Disease
阿尔茨海默病脑熵图谱的多样性补充
- 批准号:
10833739 - 财政年份:2021
- 资助金额:
$ 44.19万 - 项目类别:
Assessing ASL CBF as a biomarker for early Alzheimer's disease detection and disease progression
评估 ASL CBF 作为早期阿尔茨海默病检测和疾病进展的生物标志物
- 批准号:
10094475 - 财政年份:2019
- 资助金额:
$ 44.19万 - 项目类别:
Assessing ASL CBF as a biomarker for early Alzheimer's disease detection and disease progression
评估 ASL CBF 作为早期阿尔茨海默病检测和疾病进展的生物标志物
- 批准号:
9919512 - 财政年份:2019
- 资助金额:
$ 44.19万 - 项目类别:
Imaging data re-analysis for cocaine addiction
可卡因成瘾的影像数据重新分析
- 批准号:
8895475 - 财政年份:2014
- 资助金额:
$ 44.19万 - 项目类别:
Advanced methods for lesion-symptom mapping in aphasia
失语症病变症状映射的先进方法
- 批准号:
8117563 - 财政年份:2010
- 资助金额:
$ 44.19万 - 项目类别:
Advanced methods for lesion-symptom mapping in aphasia
失语症病变症状映射的先进方法
- 批准号:
7976163 - 财政年份:2010
- 资助金额:
$ 44.19万 - 项目类别:
SVM based group data analysis for drug abuse disorder ASL perfusion study
基于 SVM 的药物滥用障碍 ASL 灌注研究组数据分析
- 批准号:
7385333 - 财政年份:2007
- 资助金额:
$ 44.19万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 44.19万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 44.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)