Development of a molecular-level skin condition diagnostic for precision medicine
开发用于精准医学的分子级皮肤状况诊断
基本信息
- 批准号:10600694
- 负责人:
- 金额:$ 27.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademyAcneAddressAffectAmericanAreaArea Under CurveArtificial IntelligenceAtopic DermatitisBig DataBiocompatible MaterialsBiological AssayBiological MarkersBiologyCaringChronicClinicalCollectionComplementary HealthComplexDataData SetDermatologicDermatologistDermatologyDevelopmentDiagnosisDiagnosticDiagnostic Reagent KitsDiseaseDisease ManagementEconomic BurdenEnsureFish OilsFrustrationFutureHealth Care CostsHeterogeneityHippophaeHomeHumanIndividualInnovation CorpsInstructionInterviewLesionMeasuresMethodsModelingMolecularMonitorNatureOilsPatientsPatternPhasePhysiciansPrediction of Response to TherapyProcessProteinsQuality of lifeRecommendationRecording of previous eventsReportingSamplingServicesShipsSkinStandardizationStratum corneumTechnologyTestingTrainingTreatment EfficacyTreatment outcomeUniversitiesValidationVisualVitamin Eaccurate diagnosisbaseclinical diagnosticsconventional therapycostdeep neural networkdiagnostic biomarkerdiagnostic technologiesdiagnostic tooldisabilityevidence basefeature selectionflexibilityhome testimprovedindividual patientinnovationlarge scale dataliquid chromatography mass spectrometrymachine learning algorithmmachine learning predictionpeople of colorpersonalized diagnosticspersonalized medicineprecision medicinepredicting responsepredictive markerpreventprogramsrecruitsample collectionservice deliveryskin disorderskin lesionsmall moleculesuccesstelehealthtreatment planningtreatment response
项目摘要
PROJECT SUMMARY
The American Academy of Dermatology reports that 1 in 4 Americans (~84.5 million) are impacted by skin
disease. Skin disease is the fourth leading cause of disability worldwide, significantly impacts quality of life, and
costs ~$75 billion annually to treat. Skin conditions like atopic dermatitis (AD) are commonly diagnosed by
practitioners using clinical history and physical exam features; however, because of limited understanding of the
diverse pathophysiological mechanisms that underlie complex skin lesions, disease management still follows a
‘one-size-fits-all’ paradigm. This lack of evidence-based personalization or precision medicine leads to poor
treatment outcomes and patient frustration. The central objective of this proposal is the development of a
molecular-level skin assessment platform that will allow evidence-based diagnosis of skin conditions as well as
the delivery of supplementary information on the pathophysiological mechanisms of the disease state to aid
practitioners in choosing treatments and monitoring treatment progress. The final product skin assessment
platform includes: 1) a standardized sample collection kit which allows for easy, non-invasive collection of
material from a patient’s stratum corneum via tape-stripping, and 2) a pipeline to elucidate biomarker data
consisting of liquid chromatography-mass spectrometry (LC-MS/MS) analysis and big data artificial intelligence
approaches (i.e., deep neural networks, etc.). The test can be shipped through the mail and completed at home,
allowing for the technology to be used for remote dermatological care and expanding access to groups
historically underserved. Successful completion of Phase I will provide proof-of-principle of using skin biomarkers
for prediction of atopic dermatitis in samples collected at-home. In Aim 1, we will validate our sample collection
process to verity the robustness of at-home sample collection. In a study of 25 individuals, we will assess the
quality of data obtained from untrained (at-home) sample collection versus trained (in-office) sample collection
through assessing the protein content and similarity of compounds detected between these samples. In Aim 2,
we will identify predictive biomarkers of AD in a study of 75 healthy (control) and 75 individuals (patients)
diagnosed with AD. Feature selection and machine learning prediction analysis will be used to determine small
molecule biomarkers associated with AD, and success will be measured as 90% predictive ability (area under
curve (AUC) ≥ 0.90) of the biomarker set on an isolated cross validation dataset. These studies will demonstrate
proof of concept and prove product feasibility through the identification of diagnostic, monitoring and predictive
skin biomarkers associated with AD and AD therapy, provide critical analytical validation of the at-home sample
collection kit by users, and increase the success of a future Phase II program focused on the clinical validation
for the use of identified biomarkers for treatment predictions and efficacy monitoring in AD. This technology will
revolutionize dermatological care by providing accurate diagnoses and molecular-level information to guide
treatment recommendations and monitoring through precision medicine.
项目概要
美国皮肤病学会报告称,四分之一的美国人(约 8450 万)受到皮肤病的影响
疾病。皮肤病是全球第四大残疾原因,严重影响生活质量,
每年的治疗费用约为 750 亿美元。特应性皮炎 (AD) 等皮肤病通常通过以下方式诊断:
执业医师使用临床病史和体检特征;但由于了解有限
复杂皮肤病变的病理生理机制多种多样,疾病管理仍然遵循
“一刀切”范式。缺乏基于证据的个性化或精准医学导致了不良的结果
治疗结果和患者的挫败感。该提案的中心目标是开发一个
分子级皮肤评估平台,可对皮肤状况进行循证诊断
提供有关疾病状态病理生理机制的补充信息以提供帮助
医生选择治疗方法和监测治疗进展。最终产品肤质评估
平台包括:1) 标准化样本采集套件,可轻松、非侵入性地采集样本
通过胶带剥离从患者角质层获取材料,以及 2) 阐明生物标志物数据的管道
由液相色谱-质谱(LC-MS/MS)分析和大数据人工智能组成
方法(即深度神经网络等)。测试可以通过邮件运送并在家完成,
允许该技术用于远程皮肤科护理并扩大群体的访问范围
历史上服务不足。第一阶段的成功完成将为使用皮肤生物标志物提供原理证明
用于预测在家收集的样本中的特应性皮炎。在目标 1 中,我们将验证我们的样本收集
验证家庭样本采集稳健性的过程。在一项针对 25 人的研究中,我们将评估
从未经训练的(家庭)样本收集与经过训练的(办公室)样本收集获得的数据质量
通过评估这些样品之间检测到的蛋白质含量和化合物的相似性。在目标 2 中,
我们将在一项针对 75 名健康人(对照)和 75 名个体(患者)的研究中确定 AD 的预测生物标志物
诊断患有AD。将使用特征选择和机器学习预测分析来确定小
与 AD 相关的分子生物标志物,成功将被衡量为 90% 的预测能力(下面积)
孤立的交叉验证数据集上生物标志物集的曲线(AUC)≥0.90)。这些研究将证明
通过诊断、监测和预测的识别来进行概念验证并证明产品的可行性
与 AD 和 AD 治疗相关的皮肤生物标志物,为家庭样本提供关键的分析验证
用户收集套件,并提高未来专注于临床验证的第二阶段计划的成功
使用已识别的生物标志物进行 AD 治疗预测和疗效监测。这项技术将
通过提供准确的诊断和分子水平信息来指导皮肤病护理发生革命性变化
通过精准医疗提出治疗建议和监测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stacy D. Sherrod其他文献
Stacy D. Sherrod的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Metagenomic discovery and optimization of novel endolysins targeting Cutibacterium acnes to treat acne vulgaris
针对痤疮皮肤杆菌治疗寻常痤疮的新型内溶素的宏基因组发现和优化
- 批准号:
10821291 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Selective CYP26 inhibitors for the oral treatment of recalcitrant nodular acne.
用于口服治疗顽固性结节性痤疮的选择性 CYP26 抑制剂。
- 批准号:
10822482 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
ENLIGHT : Light-sensitive Engineered Living Material for acne therapy
ENLIGHT:用于痤疮治疗的光敏工程活性材料
- 批准号:
EP/Y03029X/1 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Fellowship
Developing a novel medical-grade microneedle patch to treat acne vulgaris
开发一种新型医用级微针贴片来治疗寻常痤疮
- 批准号:
10053162 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Collaborative R&D
Smart Photodynamic Therapy for Acne by Reversibly Switchable Intersystem Crossing in Pure Organic Materials
通过纯有机材料中的可逆可切换系间交叉来治疗痤疮的智能光动力疗法
- 批准号:
10483461 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Th17 extracellular trap-mediated antimicrobial host defense in acne vulgaris
寻常痤疮中 Th17 细胞外陷阱介导的抗菌宿主防御
- 批准号:
10502200 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Th17 extracellular trap-mediated antimicrobial host defense in acne vulgaris
寻常痤疮中 Th17 细胞外陷阱介导的抗菌宿主防御
- 批准号:
10698121 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Acne: a disease of lipid metabolism, microbiome and the immune response
痤疮:一种脂质代谢、微生物组和免疫反应疾病
- 批准号:
10404440 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Acne: a disease of lipid metabolism, microbiome and the immune response
痤疮:一种脂质代谢、微生物组和免疫反应疾病
- 批准号:
10404436 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
A randomized, double-blind, multi-center comparative effectiveness study of spironolactone versus doxycycline hyclate for the treatment of acne in women
螺内酯与盐酸强力霉素治疗女性痤疮的随机、双盲、多中心比较疗效研究
- 批准号:
10296086 - 财政年份:2021
- 资助金额:
$ 27.58万 - 项目类别:














{{item.name}}会员




