Hemostasis, Hematoma Expansion, and Outcomes After Intracerebral Hemorrhage
脑出血后的止血、血肿扩张和结果
基本信息
- 批准号:10598712
- 负责人:
- 金额:$ 30.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAcuteAcute DiseaseAddressAffectAgingAlgorithmsAmericanAmericasAnticoagulantsArtificial IntelligenceAwardBiological MarkersBlood coagulationBrainCaregiversCaringCatchment AreaCerebral hemisphere hemorrhageCessation of lifeClinicalClinical DataConsumptionDataData SetData SourcesDecision MakingDevelopmentDiagnosisDiagnosticDiseaseDisease modelElectronic Health RecordEthical IssuesEthicsEthnic OriginEventExposure toFamily memberFeverFrightFutureGastrostomyGeographyGrowthHandHealthHematomaHemorrhageHemostatic AgentsHemostatic functionHourHypertensionInformaticsIngestionInterviewLeadLifeLocationMachine LearningMeasuresMedicalMethodsMinorityModelingMyocardial InfarctionNeurologyNursesOutcomePatient CarePatient-Focused OutcomesPatientsPerformancePharmaceutical PreparationsPharmacistsPhysiciansPopulation HeterogeneityPrevalenceProcessQualitative ResearchROC CurveRaceRecommendationResearchResourcesRuralSavingsScanningSeizuresSeveritiesStatus EpilepticusStrokeStructureSymptomsTestingTherapeuticThrombosisTimeTrainingTravelTreatment outcomeTrustUnited States National Institutes of HealthVascular DiseasesVulnerable PopulationsWorkX-Ray Computed Tomographyadverse event riskartificial intelligence algorithmbasebrain tissueclinical practiceclopidogrelcraniumdisabilitydiverse datafollow-uphealth care availabilityhealth care servicehealth related quality of lifehigh riskmodel developmentneuroimagingpatient populationprediction algorithmpreventprothrombin complex concentratesracial differencerisk minimizationrural areasexside effectsuburb
项目摘要
PROJECT SUMMARY
Intracerebral hemorrhage (ICH), bleeding into brain tissue, is often disabling or deadly. Complications of ICH
compound the impact on patient outcome. Hematoma expansion is growth of the hematoma from the first
(diagnostic) computed tomography (CT) scan to a follow-up CT scan, and occurs in 10-25% of patients.
Reducing hematoma expansion reduces death and disability by keeping small hematomas small. Otherwise,
hematoma expansion will compress brain tissue in the limited space in the skull. Hemostatic medication (e.g.,
prothrombin complex concentrate) is effective in reducing hematoma expansion in patients at high risk for
hematoma expansion. However, our ability to predict hematoma expansion and select patients for hemostatic
medication is limited. Unfortunately, hemostatic medication has potential side effects, such as myocardial
infarction. Separately, seizures occur in about 10% of patients and may progress to status epilepticus
(continual seizures). Unfortunately, a practice of widespread seizure medications also leads to complications,
worse patient outcomes, and reduced health-related quality of life at follow-up. Patient care is harmed because
we cannot select patients for potentially life-saving treatments (hemostatic treatment, seizure medications).
ML/AI provide a solution to these roadblocks.
We have developed ML/AI algorithms to solve these roadblocks of targeting hemostatic treatment and seizure
medications in the context of an ongoing award to predict hematoma expansion using ML of multiple measures
of blood clotting (biomarkers of hemostasis). However, significant ethical issues remain unresolved. ML/AI
algorithms may be subject to unforeseen bias in the patient populations from which they are developed. Bias
may lead to different performance in patients considered vulnerable by the NIH (e.g., minority race, rural
location, access to healthcare services). Previous qualitative interviews with clinicians (nurses, pharmacists,
physicians) have revealed deep ambivalence about the use of ML/AI. There is excitement about consistent
treatment recommendations and availability at all hours, but also concerns about bias, accountability, and
oversight. Such qualitative research has not been performed in the setting of ICH, which requires emergent
decision making because hematoma expansion and seizures occur within hours of ICH symptom onset.
In the context of our ongoing award, we will determine if preliminary ML/AI algorithms we have developed have
different performance in vulnerable patients; if needed, we will develop methods to correct it, assisted by
diverse data sources in hand and established predictors of hematoma expansion and seizures. We will perform
qualitative interviews with clinicians, patients, and family members affected by ICH to identify and address
concerns that must be addressed if ML/AI is to be trusted in ICH. This proposal will serve as a model for other
acute diseases that require emergent decision making.
项目摘要
脑出血(ICH),出血进入脑组织,通常是致残或致命的。ICH并发症
加重了对患者结局的影响。血肿扩张是指血肿从最初的
(诊断性)计算机断层扫描(CT)扫描到后续CT扫描,发生在10 - 25%的患者中。
减少血肿扩大可减少死亡和残疾,使小血肿保持较小。否则,
血肿扩张会将脑组织压缩在颅骨的有限空间中。止血药物(例如,
凝血酶原复合物浓缩物)可有效减少高风险患者的血肿扩张,
血肿扩大。然而,我们预测血肿扩大和选择止血患者的能力
药物有限。不幸的是,止血药物有潜在的副作用,如心肌梗死。
梗塞另外,约10%的患者发生癫痫发作,并可能进展为癫痫持续状态
(连续发作)。不幸的是,广泛使用癫痫药物的做法也会导致并发症,
患者结局更差,随访时健康相关生活质量降低。患者护理受到伤害,因为
我们不能选择患者进行可能挽救生命的治疗(止血治疗、癫痫药物治疗)。
ML/AI为这些障碍提供了解决方案。
我们开发了ML/AI算法来解决这些针对止血治疗和癫痫发作的障碍
正在进行的使用多种指标的ML预测血肿扩大的奖励背景下的药物
凝血(止血生物标志物)。然而,重大的道德问题仍未解决。ml/AI
算法可能会受到开发它们的患者群体中不可预见的偏差的影响。偏置
可能导致NIH认为脆弱的患者的不同表现(例如,农村少数民族
位置,获得医疗保健服务)。先前与临床医生(护士,药剂师,
医生)对ML/AI的使用表现出深刻的矛盾心理。有一种兴奋,
治疗建议和随时可用性,但也关注偏见,问责制,
上级要员此类定性研究尚未在非物质文化遗产背景下进行,这需要紧急
因为血肿扩大和癫痫发作发生在ICH症状发作的数小时内。
在我们正在进行的奖项的背景下,我们将确定我们开发的初步ML/AI算法是否具有
不同的表现在脆弱的病人;如果需要,我们将制定方法来纠正它,协助
掌握了多种数据来源,并建立了血肿扩大和癫痫发作的预测因子。我们将执行
对受ICH影响的临床医生、患者和家庭成员进行定性访谈,以识别和解决
如果要在ICH中信任ML/AI,必须解决这些问题。这一建议将成为其他国家的典范。
需要紧急决策的急性疾病。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
P2Y12 inhibitor use predicts hematoma expansion in patients with intracerebral hemorrhage.
P2Y12 抑制剂的使用可预测脑出血患者的血肿扩大。
- DOI:10.1002/acn3.52070
- 发表时间:2024
- 期刊:
- 影响因子:5.3
- 作者:Houskamp,EthanJ;Liu,Yuzhe;SilvaPinheirodoNascimento,Juliana;Jahromi,BabakS;Lindholm,PaulF;Kwaan,HauC;Naidech,AndrewM
- 通讯作者:Naidech,AndrewM
From One-Size-Fits-All to Mechanism-Guided Treatment for Intracranial Hemorrhage.
从一刀切到机制引导的颅内出血治疗。
- DOI:10.1097/ccm.0000000000004055
- 发表时间:2019
- 期刊:
- 影响因子:8.8
- 作者:Naidech,AndrewM
- 通讯作者:Naidech,AndrewM
The Story of Intracerebral Hemorrhage: From Recalcitrant to Treatable Disease.
- DOI:10.1161/strokeaha.121.033484
- 发表时间:2021-05
- 期刊:
- 影响因子:8.3
- 作者:Broderick JP;Grotta JC;Naidech AM;Steiner T;Sprigg N;Toyoda K;Dowlatshahi D;Demchuk AM;Selim M;Mocco J;Mayer S
- 通讯作者:Mayer S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANDREW M NAIDECH其他文献
ANDREW M NAIDECH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANDREW M NAIDECH', 18)}}的其他基金
Precise Prediction and Treatment of Seizures After Intracranial Hemorrhage
颅内出血后癫痫发作的精确预测和治疗
- 批准号:
10658031 - 财政年份:2023
- 资助金额:
$ 30.01万 - 项目类别:
Hemostasis, Hematoma Expansion, and Outcomes After Intracerebral Hemorrhage
脑出血后的止血、血肿扩张和结果
- 批准号:
9902563 - 财政年份:2019
- 资助金额:
$ 30.01万 - 项目类别:
Hemostasis, Hematoma Expansion, and Outcomes After Intracerebral Hemorrhage
脑出血后的止血、血肿扩张和结果
- 批准号:
10388105 - 财政年份:2019
- 资助金额:
$ 30.01万 - 项目类别:
Hemostasis, Hematoma Expansion, and Outcomes After Intracerebral Hemorrhage
脑出血后的止血、血肿扩张和结果
- 批准号:
10592392 - 财政年份:2019
- 资助金额:
$ 30.01万 - 项目类别:
Health related quality of life and seizure medications after hemorrhagic stroke
出血性中风后与健康相关的生活质量和癫痫药物
- 批准号:
9133335 - 财政年份:2015
- 资助金额:
$ 30.01万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 30.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 30.01万 - 项目类别:
Standard Grant














{{item.name}}会员




