Public trust of artificial intelligence in the precision CDS health ecosystem - Administrative Supplement
精准CDS健康生态系统中人工智能的公众信任-行政补充
基本信息
- 批准号:10598371
- 负责人:
- 金额:$ 30.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-02 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAddressAdministrative SupplementAdoptedArtificial IntelligenceAttentionAttitudeAutomobile DrivingBeliefBeneficenceBioethical IssuesBioethicsCancer PatientClinicalComplexComputer softwareDataData ScientistDevelopmentDiagnosticEcosystemEnsureEquationEquilibriumEthical IssuesEthicistsEthicsFAIR principlesFibrosisGenerationsGoalsHealthHealth ProfessionalHealth systemImageIndigenousInformed ConsentInstitutionInstitutional RacismMachine LearningMagnetic Resonance ImagingMeasuresMedicalMedical DeviceMedicineModelingNonmaleficenceNotificationParentsPatientsPersonsPoliciesPrivacyProceduresProduct LabelingPublic HealthRaceRadiation OncologyResearchResearch PersonnelStructural RacismSurveysSystemTRUST principlesTechnologyTestingTrustUnited States Food and Drug AdministrationValidationX-Ray Computed Tomographyauthorityclinical decision supportcognitive interviewcomputerized toolsdata acquisitiondata toolsdosageevidence baseexperienceimprovedmachine learning algorithmmachine learning methodoutcome predictionpatient expectationpredictive modelingpublic health ethicspublic trustquality assurancetrustworthiness
项目摘要
ABSTRACT
Artificial Intelligence and Machine Learning (AI/ML) applications are rapidly expanding in fields such as
radiation oncology. The grand scale of data acquisition and scope of applications strains patient expectations
and ethical paradigms for medicine and public health. Current regulatory regimes struggle to keep pace with
the rapid pace of development in AI/ML and local health systems vary widely in their capacity to adopt and
conduct quality assurance and review for in-house or commercially available AI/ML solutions. In general, the
rapid expansion of AI/ML would benefit from the ability to measure patient attitudes and experiences that would
enable evidence-based best practices for addressing medical and public health ethical issues such as trust,
equity, and assurance, and bioethical principles of autonomy, beneficence, and non-maleficence. In the
Parent R01, we are examining public trust in AI/ML as it applies to clinical decision support use cases. (FDAs)
system of categorization. The goal of the proposed Supplemental project is to expand these efforts to
assess values, attitudes, concerns, and trust of patients to inform policy that better serves people and
institutions. Specifically, we propose to develop validated measures of patient attitudes and beliefs about key
biomedical and public health ethical principles and issues such as autonomy, beneficence, non-maleficence,
trust, equity, and assurance, as they relate to the expected benefit of and comfort with the use of AI/ML in
radiation oncology. These ethical issues are multi-dimensional, complex, interrelated, and reliant on context.
Our validation procedures will thus include structural equation modeling (Aim 2), which will capture the
underlying relationships between variables that measure complex topics and will inform the interpretation and
use of the measures. To examine the question of how context is associated with ethical values, we will
examine these issues in current radiation oncology use cases: quality assessment (e.g., verifying dosage),
outcome predictive models (e.g., predicting fibrosis), treatment predictive models (e.g., therapies), and
generation of synthetic images (e.g., using MRI data to generate CT images).
摘要
人工智能和机器学习(AI/ML)的应用正在迅速扩大,
放射肿瘤学数据采集的大规模和应用范围使患者的期望值变得紧张
以及医学和公共卫生的伦理规范。目前的监管制度难以跟上
人工智能/机器学习和当地卫生系统的快速发展在采用和
对内部或商业可用的AI/ML解决方案进行质量保证和审查。总体上
AI/ML的快速扩展将受益于测量患者态度和体验的能力,
使基于证据的最佳做法,以解决医疗和公共卫生伦理问题,如信任,
平等、保证和自主、有益和不有害的生物伦理原则。在
父R 01,我们正在研究公众对AI/ML的信任,因为它适用于临床决策支持用例。(联邦发展局)
分类系统。拟议补充项目的目标是扩大这些努力,
评估患者的价值观、态度、关注点和信任度,为更好地服务于人民的政策提供信息,
机构职能体系具体来说,我们建议制定有效的措施,病人的态度和信念的关键
生物医学和公共卫生伦理原则和问题,如自主权,善行,非maleficence,
信任、公平和保证,因为它们与使用AI/ML的预期利益和舒适度有关,
放射肿瘤学这些伦理问题是多方面的,复杂的,相互关联的,并依赖于上下文。
因此,我们的验证程序将包括结构方程模型(目标2),它将捕获
衡量复杂主题的变量之间的潜在关系,并将为解释提供信息,
使用这些措施。为了研究背景如何与伦理价值相关联的问题,我们将
检查当前放射肿瘤学用例中的这些问题:质量评估(例如,验证剂量),
结果预测模型(例如,预测纤维化),治疗预测模型(例如,治疗),以及
合成图像的生成(例如,使用MRI数据生成CT图像)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jodyn Elizabeth Platt其他文献
Jodyn Elizabeth Platt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jodyn Elizabeth Platt', 18)}}的其他基金
Public trust of artificial intelligence in the precision CDS health ecosystem
精准CDS健康生态系统中人工智能的公众信任
- 批准号:
10092723 - 财政年份:2021
- 资助金额:
$ 30.25万 - 项目类别:
Public trust of artificial intelligence in the precision CDS health ecosystem
精准CDS健康生态系统中人工智能的公众信任
- 批准号:
10459231 - 财政年份:2021
- 资助金额:
$ 30.25万 - 项目类别:
Public trust of artificial intelligence in the precision CDS health ecosystem
精准CDS健康生态系统中人工智能的公众信任
- 批准号:
10632123 - 财政年份:2021
- 资助金额:
$ 30.25万 - 项目类别:
Mapping the sociotechnical ecosystem of precision medicine
绘制精准医疗的社会技术生态系统
- 批准号:
9892643 - 财政年份:2020
- 资助金额:
$ 30.25万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.25万 - 项目类别:
Research Grant