RCMI@Morgan: Center for Urban Health Disparities Research and Innovation
RCMI@摩根:城市健康差异研究与创新中心
基本信息
- 批准号:10599734
- 负责人:
- 金额:$ 29.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-31 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAddressAffectAfrican AmericanAfrican ancestryAlgorithm DesignAlgorithmic AnalysisAlgorithmsAreaArtificial IntelligenceAwardBaltimoreBayesian AnalysisBehavioralBig DataBiologyCase StudyClinicalCollaborationsCommunitiesDataData AnalysesData SetDiabetes MellitusEducational workshopEnsureEthicsEuropeanEvaluationExhibitsFacultyFundingGenderGeneticGoalsGrantHIV/HCVHarm ReductionHealth Disparities ResearchHealthcareIndustryInstitutionInstitutional Review BoardsLeadLearningLocal GovernmentMachine LearningMalignant NeoplasmsMarylandMeasuresMedicineParentsPatientsPopulationPreventionProbabilityPublic Health InformaticsPublicationsRaceResearchResearch InfrastructureResearch PersonnelResearch Project GrantsResource AllocationRiskSamplingScienceServicesSexually Transmitted DiseasesSocietiesSocioeconomic StatusSpecific qualifier valueSystemTechniquesTrainingTranslational ResearchTranslationsUniversitiesWorkaddictionalgorithmic biasbaseblack patientcareer developmentcohortcollaborative environmentearly-career facultyfood securityhealth disparityhealth managementinnovationlearning algorithmmRNA Expressionmeetingsparent grantpopulation healthpre-clinicalprecision medicinepublic health researchracial biassocialsocial health determinantsstatisticssupportive environmenttoolurban health disparities
项目摘要
Project Summary
Characterization of health disparities in African ancestry and reduction of algorithmic bias
In the epoch of big data, algorithms are present throughout society, transforming it into more personalized and
flatter. One primary convergence is the application of algorithms for biology, medicine, and health care.
Nonetheless, a recent study shows that a widely used algorithm, typical of this industry-wide approach and
affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients are
considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses. This is a specific
example of a broader issue known as algorithmic bias, wherein algorithms reinstate the cultural biases
encoded in the data sets they are trained on. Increasing appreciation for the impact of algorithmic bias has led
to a corresponding call for algorithmic accountability. Caplan et al. define "Algorithmic accountability ultimately
refers to the assignment of responsibility for how an algorithm is created and its impact on society; if harm
occurs, accountable systems include a mechanism for redress" (2018: 10). That is, algorithmic accountability
includes harm reduction and prevention considerations in both the design of the algorithm and its effects.
These issues of “algorithmic bias” and “algorithmic accountability” also involve in health disparities in African
ancestry exposed in the parent RCMI award with following goals: (1) Enhance MSU's health disparities
research infrastructure and capacity in both basic biomedical and behavioral/public health research, (2)
Enhance high-quality research, including translational research, on urban health and health disparities through
increased external funding, publications and scientific services to the community, (3) Facilitate collaborations
between basic biomedical and social/behavioral faculty researchers and create a collaborative and supportive
environment for faculty career development, especially for new and early career faculty and (4) Build
sustainable partnerships with two research-intensive institutions, Johns Hopkins University and the University
of Maryland, Baltimore, as well as local government and community-based organizations dealing with health
disparities.
In the Aim 1 for this project, the current metrics of the parent RCMI award will be redefined with statistics on
the probability distribution space in the spectra of gender, race, and socioeconomic status. Potential data bias
in de-identification will be filtered out before characterizing “algorithmic bias.” Based on the redefined metrics of
Aim 1, AI techniques will be advanced toward precision medicine considering the broad spectra of population
and ancestry to reduce the identified biases. Specifically, inference and learning algorithms will be developed
on probability spaces with meta-learning via Bayesian optimization with regularization.
We will host public seminars and workshops with case studies covering the topics in the interaction among
ethics, AI, and health disparities. The analysis framework and tool will be publicly disseminated and will have
extensibility and integrability with the public portal analytics of "All of Us."
项目摘要
非洲血统健康差异的表征和算法偏差的减少
在大数据时代,算法在社会上随处可见,将其转变为更个性化和
奉承。一个主要的趋同是算法在生物、医学和医疗保健方面的应用。
然而,最近的一项研究表明,一种广泛使用的算法,这种全行业方法的典型和
影响数百万患者,表现出显著的种族偏见:在给定的风险分数下,黑人患者
比白人病人病情严重得多,表现为疾病失控的迹象。这是一个特定的
一个被称为算法偏差的更广泛问题的例子,其中算法恢复了文化偏见
在他们接受训练的数据集中进行编码。越来越多的人意识到算法偏差的影响,导致
以响应对算法责任的相应呼吁。Caplan等人。定义“最终的算法责任”
指如何创建算法及其对社会的影响的责任分配;如果损害
发生时,问责制度包括一个补救机制“(2018:10),即算法问责
在算法的设计及其效果中都包含了减少危害和预防方面的考虑。
这些“算法偏差”和“算法问责”问题也涉及非洲的健康差距。
在家长RCMI奖中暴露的祖先有以下目标:(1)增强密歇根州立大学的健康差距
基础生物医学和行为/公共卫生研究方面的研究基础设施和能力,(2)
加强关于城市健康和健康差距的高质量研究,包括转化研究,通过
增加对社区的外部资金、出版物和科学服务,(3)促进合作
在基础生物医学和社会/行为学院研究人员之间建立协作和支持
教师职业发展的环境,特别是新教师和早期教师的职业发展和(4)建设
与约翰·霍普金斯大学和约翰·霍普金斯大学这两个研究密集型机构建立可持续的伙伴关系
马里兰州,巴尔的摩,以及当地政府和社区组织处理卫生问题
差距。
在本项目的目标1中,将重新定义父RCMI奖的当前指标,并提供以下统计数据
性别、种族和社会经济地位光谱中的概率分布空间。潜在的数据偏差
在去辨认之前,将被过滤掉,以表征“算法偏差”。基于重新定义的指标
目标1,考虑到人群的广泛光谱,人工智能技术将朝着精准医学方向发展
和血统,以减少已识别的偏见。具体来说,将开发推理和学习算法
基于正则化贝叶斯优化的元学习概率空间。
我们将举办公开研讨会和工作坊,提供案例研究,涵盖以下主题:
伦理、人工智能和健康差距。将公开分发分析框架和工具,并将
“我们所有人”的公共门户分析的可扩展性和可集成性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valerie Odero-Marah其他文献
Valerie Odero-Marah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valerie Odero-Marah', 18)}}的其他基金
HMGA2 mediates resistance to therapy in prostate cancer
HMGA2 介导前列腺癌治疗耐药
- 批准号:
10622747 - 财政年份:2023
- 资助金额:
$ 29.67万 - 项目类别:
RCMI@Morgan: Center for Urban Health Disparities Research and Innovation
RCMI@摩根:城市健康差异研究与创新中心
- 批准号:
10372112 - 财政年份:2019
- 资助金额:
$ 29.67万 - 项目类别:
RCMI@Morgan: Center for Urban Health Disparities Research and Innovation
RCMI@摩根:城市健康差异研究与创新中心
- 批准号:
10671920 - 财政年份:2019
- 资助金额:
$ 29.67万 - 项目类别:
RCMI@Morgan: Center for Urban Health Disparities Research and Innovation
RCMI@摩根:城市健康差异研究与创新中心
- 批准号:
10452009 - 财政年份:2019
- 资助金额:
$ 29.67万 - 项目类别:
RCMI@Morgan: Center for Urban Health Disparities Research and Innovation
RCMI@摩根:城市健康差异研究与创新中心
- 批准号:
10113369 - 财政年份:2019
- 资助金额:
$ 29.67万 - 项目类别:
The Role of Snail Signaling in Prostate Cancer Metastasis
蜗牛信号在前列腺癌转移中的作用
- 批准号:
8495467 - 财政年份:2013
- 资助金额:
$ 29.67万 - 项目类别:
SNAIL-MEDIATED SIGNALING IN HUMAN PROSTATE CANCER
人类前列腺癌中蜗牛介导的信号传导
- 批准号:
8357123 - 财政年份:2011
- 资助金额:
$ 29.67万 - 项目类别:
SNAIL-MEDIATED SIGNALING IN HUMAN PROSTATE CANCER
人类前列腺癌中蜗牛介导的信号传导
- 批准号:
8166161 - 财政年份:2010
- 资助金额:
$ 29.67万 - 项目类别:
SNAIL-MEDIATED SIGNALING IN HUMAN PROSTATE CANCER
人类前列腺癌中蜗牛介导的信号传导
- 批准号:
7959171 - 财政年份:2009
- 资助金额:
$ 29.67万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 29.67万 - 项目类别:
Research Grant














{{item.name}}会员




