Deep learning methods to accelerate discoveryof drugs targeting gene regulatory proteins

深度学习方法加速发现针对基因调节蛋白的药物

基本信息

  • 批准号:
    10599781
  • 负责人:
  • 金额:
    $ 39.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-20 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

SUMMARY To evaluate how a drug candidate affects cells, researchers often study how the abundance or behavior of a specific set of proteins is changed by treatment with each compound. However, it is not currently possible to test the effect of every possible drug compound (>500,000) on every human protein (~20,000) in hundreds of different types of cells. Even the most advanced protein analysis systems available today could only measure and process a tiny fraction of these combinations in a feasible timeframe. One method of measuring the abundance of all the proteins in a cell sample is mass spectrometry, but available instruments can only analyze several samples per day. To increase the throughput of these mass spectrometry experiments, in Aim 1 of the proposed project we will develop a machine learning algorithm that will reconstruct the peptide composition of a large number of samples from measurements of a smaller number of mixtures of those samples. This technology, called “compressed sensing” was developed for digital imaging to reduce (com- press) the file size of an image. Importantly, it can also “decompress” a low amount of collected information to reconstruct an image with surprisingly high detail. Similarly, we will develop a compressed sensing algorithm to extract the individual protein profiles from mixtures of multiple combined samples. Initially, this approach will analyze 1,000 samples from 250 measurements of mixtures of those samples, providing a 4-fold increase in speed. Ultimately, with a much higher number of samples, it may allow a 100-fold increase in samples analyzed. To accelerate interpretation of this type of data for drug discovery, we will create a machine learning algorithm to simplify complex patterns of interactions between test compounds and the proteins within various types of cells. Previously acquired data will be modeled to learn the effects of individual compounds on various proteins. By learning from a large number of these data sets that describe interactions between specific compounds and proteins, in many different cell types, the model will be able to predict the effect of untested compounds on proteins within various types of cells. In addition, it will be able to indicate which experiments would be most useful to perform in the future, to obtain information on classes of compounds or proteins that are lacking in the current data sets. The combination of these two techniques has the potential to greatly accelerate development of novel drugs by providing a potentially huge increase in protein abundance measurements, along with a powerful method to predict how drugs will alter the expression of proteins in cells.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Ellis Fondrie其他文献

William Ellis Fondrie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Ellis Fondrie', 18)}}的其他基金

Defining a mechanism of LRP1B tumor suppression in glioblastoma
确定胶质母细胞瘤中 LRP1B 肿瘤抑制的机制
  • 批准号:
    9258045
  • 财政年份:
    2017
  • 资助金额:
    $ 39.84万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Standard Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 39.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了