Spatiotemporal regulation of digit regeneration by sensory nerves
感觉神经对手指再生的时空调节
基本信息
- 批准号:10599298
- 负责人:
- 金额:$ 11.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2023-12-03
- 项目状态:已结题
- 来源:
- 关键词:AdultAmputationAntibodiesAutomobile DrivingBiologyBlood VesselsBone DevelopmentBone RegenerationBone TissueBone callusCell Differentiation processCell MaintenanceCellsDataData SetDigit structureDistalElementsExcisionGenetic TranscriptionGenomicsGoalsHistologicImpairmentIn Situ HybridizationInflammatoryInflammatory ResponseInvadedKnock-in MouseLiteratureMammalsMesenchymalMolecularNatural regenerationNerveNerve BlockNerve Growth FactorsOutcomePatternPhalanxPhosphotransferasesPhysiologic OssificationPhysiologic calcificationPlayProcessProliferatingProtocols documentationRadiology SpecialtyRegulationRoleSensorySignal PathwaySignal TransductionSiteSkeletonSourceSpatial DistributionTechnologyTherapeuticTimeTissue EngineeringTissuesTitrationsTransgenic MiceTransgenic OrganismsVascularizationVertebratesafferent nerveblastemabonebone fracture repairbone repaircell dedifferentiationcell typedigit regenerationgenetic signaturehealinghistological stainsinnovationinsightmechanical loadmineralizationmouse modelnerve supplyneurotransmissionneurotrophic factornew growthnovelnovel strategiesosteogenicpharmacologicreceptorrecruitregenerativerepairedsciatic nervesingle-cell RNA sequencingskeletal stem cellsoft tissuespatiotemporalstem cell proliferationtranscriptomicswound closure
项目摘要
Specific Aims
The regeneration of the mammalian skeleton requires the action of both intrinsic and extrinsic inductive factors
from multiple cell types which function in a hierarchical and temporal fashion to control skeletal progenitor cell
proliferation and differentiation. Sensory nerves have been shown to be an integral part of the bone fracture
repair process, driving the processes of vascularization, ossification, and mineralization of bone. In contrast to
the bone repair process, regeneration, where new growth replaces both the amputated bone and surrounding
soft tissue varies widely in vertebrates. In mammals, regeneration is restricted to only the distal phalangeal
element. More proximal amputations result in the formation of a hypertrophic callus and failed regeneration.
Significant efforts have been placed on dissecting out the distinguishing signaling pathways differentiating
regenerative versus non-regenerative amputations. Beyond the desire to promote full regeneration, unraveling
these processes could allow us to leverage regenerative mechanisms during repair and tissue-engineering
based bone therapeutic approaches. A handful of prior studies have implicated innervation as an essential
component of regeneration, however they relied on complete sciatic nerve resection, making it impossible to
distinguish nerve-specific regenerative outcomes from mechanical loading-induced effects, and the relationship
between innervation and regeneration remains unclear.
Using transgenic mouse models and pharmacological inhibition, our preliminary results point to a severe delay
in digit regeneration following inhibition of sensory nerve tropomycin receptor kinase A (TrkA). In the context of
previous literature, we propose that sensory nerve TrkA signaling is necessary for proper digit regeneration.
Specifically, we propose that: i) sensory nerves are recruited to the amputation site early in the healing process
through the nerve growth factor (NGF)-TrkA signaling axis established in our lab, ii) sensory nerve-derived
signals play an essential role in promoting blastema formation and maintaining cells in a proliferative,
osteogenically primed state, and thus, iii) disruption of sensory nerve signaling through transgenic and/or
pharmacological inhibition severely impairs digit bone regeneration.
Specific Aim 1: Define the spatiotemporal patterning of sensory innervation and characterize the effects of
sensory nerve TrkA signaling disruption during digit regeneration
Hypothesis: Sensory nerve outgrowth and signaling coincides with wound closure, blastema formation and
proliferation, initiating overall digit regeneration.
Preliminary results using a transgenic knockin mouse model (TrkAF592A), demonstrate a substantial deficit in digit
regeneration. In Aim 1 we will first conduct a comprehensive study on the temporal and spatial patterning of
neurotrophin expression and sensory innervation during early and late stages of digit regeneration. Here, we will
make use of commercial antibodies, as well as transgenic mouse lines (Thy1-YFP, NGF-eGFP) to identify the
spatial distribution of sensory nerves during healing. Cellular sources of NGF will be identified using established
markers of mesenchymal and inflammatory cells. Histological and radiological approaches will then be used to
determine the effects of temporally titrated TrkA signaling inhibition on the inflammatory response (day 3, 7),
formation of the blastema (day 10) and subsequent vascular invasion and tissue mineralization (day 14, 28) to
elucidate the multiple facets through which sensory nerves regulate digit regeneration.
Specific Aim 2: Delineate the molecular mechanisms affiliated with sensory nerve signaling disruption during
digit regeneration
Hypothesis: Sensory nerves secrete factors to precisely act at the crossroad of digit regeneration, regulating cell
dedifferentiation, proliferation and osteogenic commitment.
Transcriptional data is typically derived from the whole blastema, while spatial information has only been
determined using immunohistochemical approaches one target at a time. Using the cutting-edge and newly
validated spatial transcriptomics (VISIUM 10X Genomics), we will examine the gene signature in innervated and
non-innervated regenerating digits. Though previously only viable in soft tissues, we have recently optimized a
novel approach for bone tissue. This innovative transcriptomics process will be used to gather transcriptional
data during regeneration after amputation following TrkA inhibition from innervated domains in an unbiased
fashion to determine the nerve-specific factors underlying blastema biology. Results will be validated using
publicly available single-cell RNA-seq data sets, in situ hybridization (RNAscope) and histological staining.
Justification for proposal as an R21: The technology of spatial transcriptomics, though extremely powerful, is
yet to be successfully applied to adult mineralized tissue. Using our newly developed protocol, the results of this
R21 will provide first-in-field insights into the spatially-defined regulation of sensory nerves at various stages
throughout regeneration after amputation, as well as fundamental understandings of their role in the overall
maintenance of cell fate and plasticity.
具体目标
哺乳动物骨骼的再生需要内在和外在诱导因子的作用
从多种细胞类型,其以分级和时间方式起作用以控制骨骼祖细胞
增殖和分化。感觉神经已被证明是骨折的一个组成部分
修复过程,驱动骨的血管化、骨化和矿化过程。相比
骨修复过程,再生,新的生长物取代了截肢的骨和周围的组织。
脊椎动物的软组织变化很大。在哺乳动物中,再生仅限于远端趾骨
元素更近端的截肢导致肥厚性骨痂的形成和再生失败。
已经做出了大量的努力来解剖出不同的信号通路,
再生性截肢和非再生性截肢除了促进完全再生的愿望,
这些过程可以让我们在修复和组织工程中利用再生机制
基于骨治疗方法。一些先前的研究已经暗示神经支配是一个必不可少的
再生的组成部分,然而,他们依赖于完整的坐骨神经切除,使其不可能
区分神经特异性再生结果与机械负荷诱导效应,以及
神经支配和再生之间的关系还不清楚。
使用转基因小鼠模型和药物抑制,我们的初步结果表明,
在抑制感觉神经原霉素受体激酶A(TrkA)后的手指再生中。背景下
在先前的文献中,我们提出感觉神经TrkA信号传导对于适当的手指再生是必要的。
具体而言,我们提出:i)感觉神经在愈合过程的早期被招募到截肢部位
通过我们实验室建立的神经生长因子(NGF)-TrkA信号轴,ii)感觉神经源性
信号在促进芽基形成和维持细胞增殖,
iii)通过转基因和/或
药理学抑制严重损害趾骨再生。
具体目标1:定义感觉神经支配的时空模式,并表征
手指再生过程中感觉神经TrkA信号的破坏
假设:感觉神经的生长和信号传导与伤口闭合、芽基形成和伤口愈合一致。
增殖,启动整体数字再生。
使用转基因敲入小鼠模型(TrkAF 592 A)的初步结果表明,
再生在目标1中,我们将首先全面研究
神经营养因子的表达和感觉神经支配在早期和晚期阶段的数字再生。在这里,我们将
利用商业抗体,以及转基因小鼠系(Thy 1-YFP,NGF-eGFP)来鉴定
愈合过程中感觉神经的空间分布。神经生长因子的细胞来源将使用已建立的
间充质细胞和炎症细胞的标志物。然后将使用组织学和放射学方法,
确定时间滴定的TrkA信号传导抑制对炎症反应的影响(第3、7天),
芽基的形成(第10天)和随后的脉管侵入和组织矿化(第14、28天),
阐明了感觉神经调节手指再生的多个方面。
具体目标2:描述与感觉神经信号中断有关的分子机制,
数字再生
假说:感觉神经分泌因子精确地作用于手指再生的十字路口,调节细胞
去分化、增殖和成骨定型。
转录数据通常来源于整个芽基,而空间信息仅来源于整个芽基。
使用免疫组织化学方法一次确定一个目标。使用最先进的和新的
验证的空间转录组学(VISIUM 10 X基因组学),我们将研究神经支配和
无神经支配的再生手指虽然以前只在软组织中可行,但我们最近优化了一种
骨组织的新方法。这一创新的转录组学过程将用于收集转录
TrkA抑制神经支配结构域后截肢后再生期间的数据,
时尚,以确定潜在的芽基生物学的神经特异性因素。将使用以下方法验证结果:
公开可用的单细胞RNA-seq数据集、原位杂交(RNAscope)和组织学染色。
作为R21提案的理由:空间转录组学技术虽然非常强大,
还没有成功应用于成人矿化组织。使用我们新开发的协议,
R21将提供对不同阶段感觉神经的空间定义调节的首次现场见解
在截肢后的整个再生过程中,以及对它们在整个再生过程中的作用的基本理解,
维持细胞命运和可塑性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mimi C Sammarco其他文献
Letter to the Editor: Editorial: Beware of Studies Claiming that Social Factors are "Independently Associated" with Biological Complications of Surgery.
致编辑的信:社论:当心声称社会因素与手术生物并发症“独立相关”的研究。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:4.2
- 作者:
J. Simkin;A. Bronstone;A. Chapple;R. C. Clement;Anna Cohen;M. Czarny‐Ratajczak;V. Dasa;Colette Hilliard;Andrew G. King;P. Krause;Luis Marrero;R. Maupin;K. Mix;M. Ronis;Mimi C Sammarco;E. Trapido;R. Zura;R. Steen - 通讯作者:
R. Steen
Mimi C Sammarco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mimi C Sammarco', 18)}}的其他基金
Cellular metabolism at the crossroads of skeletal regeneration
处于骨骼再生十字路口的细胞代谢
- 批准号:
10529832 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Genomics, Bioinformatics, and Molecular Imaging Core
基因组学、生物信息学和分子成像核心
- 批准号:
10631206 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Spatiotemporal regulation of digit regeneration by sensory nerves
感觉神经对手指再生的时空调节
- 批准号:
10452887 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Cellular metabolism at the crossroads of skeletal regeneration
处于骨骼再生十字路口的细胞代谢
- 批准号:
10700104 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
The role of oxygen in blastema formation and skeletal regeneration
氧在芽基形成和骨骼再生中的作用
- 批准号:
8396757 - 财政年份:2013
- 资助金额:
$ 11.5万 - 项目类别:
相似海外基金
Understanding the Heightened Amputation Risk Among People Experiencing Homelessness: A Population-based Cohort Study
了解无家可归者截肢风险升高:一项基于人群的队列研究
- 批准号:
480010 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Operating Grants
Collaborative Research: An Integrated, Proactive, and Ubiquitous Prosthetic Care Robot for People with Lower Limb Amputation: Sensing, Device Designing, and Control
合作研究:针对下肢截肢患者的集成、主动、无处不在的假肢护理机器人:传感、设备设计和控制
- 批准号:
2246672 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated, Proactive, and Ubiquitous Prosthetic Care Robot for People with Lower Limb Amputation: Sensing, Device Designing, and Control
合作研究:针对下肢截肢患者的集成、主动、无处不在的假肢护理机器人:传感、设备设计和控制
- 批准号:
2246671 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Advancing measurement of physical function in upper limb amputation
推进上肢截肢身体功能的测量
- 批准号:
10749083 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Collaborative Research: An Integrated, Proactive, and Ubiquitous Prosthetic Care Robot for People with Lower Limb Amputation: Sensing, Device Designing, and Control
合作研究:针对下肢截肢患者的集成、主动、无处不在的假肢护理机器人:传感、设备设计和控制
- 批准号:
2246673 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Standard Grant
Establishing the Relationship Between Muscle Quality and Joint Loading for Individuals with Transtibial Amputation
建立小腿截肢患者的肌肉质量和关节负荷之间的关系
- 批准号:
10677236 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Preventing Amputation through Management of Diabetic Foot; Working with Industry to generate supply chains in an LMIC setting (Uganda) for low-cost fo
通过糖尿病足管理预防截肢;
- 批准号:
2883969 - 财政年份:2023
- 资助金额:
$ 11.5万 - 项目类别:
Studentship
Diabetes Lower Extremity Complications Research and Training Network in Foot Ulcer and Amputation Prevention (DIALECT)
糖尿病下肢并发症足部溃疡和截肢预防研究与培训网络 (DIALECT)
- 批准号:
EP/X02699X/1 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Research Grant
Myoelectric upper limb prosthesis with multiple degrees of freedom using targeted muscle reinnervation surgery for traumatic amputation
多自由度肌电上肢假肢,采用靶向肌肉神经支配手术治疗创伤性截肢
- 批准号:
22K16723 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An automatically-adjusting prosthetic socket for people with transtibial amputation
适用于小腿截肢患者的自动调节假肢接受腔
- 批准号:
10364108 - 财政年份:2022
- 资助金额:
$ 11.5万 - 项目类别:














{{item.name}}会员




