Developing a Donor-Candidate Risk Prediction System to Optimize Lung Allocation and Transplant Outcomes
开发供者-候选者风险预测系统以优化肺分配和移植结果
基本信息
- 批准号:10600032
- 负责人:
- 金额:$ 14.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAffectAlgorithmsArtificial IntelligenceBioethicsCharacteristicsClinicalComplexDataDevelopmentGoalsHealthcareHeartInterdisciplinary StudyInterventionIntuitionK-Series Research Career ProgramsKidney TransplantationLeadershipLearningLungLung TransplantationLung diseasesMachine LearningMedicalMentorsMethodologyModelingModernizationModificationOrganOrgan DonorOutcomeOutcomes ResearchPatient-Focused OutcomesPatientsPatternPerceptionPhysiciansPlayPoliciesPolicy MakerProcessQualifyingResearchResearch PersonnelResourcesRoleScientific Advances and AccomplishmentsScientistSeverity of illnessSystemTechniquesTestingTimeTranslatingTransplant RecipientsTransplantationVariantWaiting ListsWorkartificial intelligence algorithmartificial intelligence methodcareercareer developmentdaltonevidence basefunctional statusimprovedindividual patientinnovationmachine learning modelmortalityorgan allocationpost-transplantprognosticprognostic modelrisk predictionskillstransplant centerstreatment choice
项目摘要
Project Summary/Abstract
The lung transplant allocation system is not guided by an evidence-based strategy that accounts for the complex
interactions of donor and candidate characteristics missing an opportunity to maximize survival benefit from
utilization of the severely limited organ supply. To overcome this deficit, we will develop a donor-candidate risk
prediction system guided by traditional regression-based statistical techniques and modern machine learning
and artificial learning techniques focused on uncovering the impact of donor characteristics, variation in post-
transplant survival, and donor and candidate interactions. This goal will be accomplished by carrying out the
following three aims. In Aim 1, we will test the hypothesis that incorporating donor characteristics improves
accuracy of prognostic models of recipient post-transplant survival. We will use regression-based and machine
learning approaches and compare the accuracy of the resultant survival models. In Aim 2, we will determine how
donor and candidate characteristics interact to introduce variation in post-transplant survival. Regression-based
and machine learning approaches will be used to identify and evaluate interactions, clustering, and effect
modification by waitlist time, illness severity, and functional status. In Aim 3, we will develop a machine learning/
artificial intelligence algorithm to inform organ allocation and acceptance decisions. Survival trade-offs will be
characterized using machine learning models to build an artificial intelligence allocation algorithm which will be
compared to historical decisions. In summary, the current US lung allocation system does not yet consider the
contribution of donor factors to post-transplant risk predictions which may explain why LAS-derived estimates of
survival benefit are inaccurate. Improved risk predictions would permit optimization of donor and candidate
matching to lay the framework for a system based on compatibility which has the potential to improve donor
utilization, waitlist survival, and post-transplant survival. Use of a staged modeling strategy combining traditional
regression-based approaches and modern machine learning and artificial intelligence methods will encourage
innovative solutions to problems in US lung allocation. This proposal's innovation is further augmented by a
uniquely qualified multi-disciplinary research team with expertise in analysis of complex systems and US lung
allocation policies.
项目摘要/摘要
肺移植分配系统不是以循证策略为指导的,这种策略解释了复杂性
捐赠者和候选人特征的相互作用错失了最大化生存收益的机会
利用严重有限的器官供应。为了克服这一缺陷,我们将开发一个捐赠者候选人风险
基于传统回归统计技术和现代机器学习的预测系统
人工学习技术侧重于揭示捐赠者特征、术后变化的影响。
移植存活,以及供者和候选人的相互作用。这一目标将通过实施
遵循三个目标。在目标1中,我们将检验这样一个假设,即结合捐赠者的特征可以改善
受体移植后存活率预测模型的准确性。我们将使用基于回归和机器的
学习方法,并比较结果生存模型的准确性。在目标2中,我们将确定如何
供者和候选者的特征相互作用,在移植后的存活率中引入差异。基于回归的
并将使用机器学习方法来识别和评估交互、集群和效果
根据等待名单时间、疾病严重程度和功能状态进行修改。在目标3中,我们将开发一个机器学习/
人工智能算法,用于通知器官分配和接受决定。生存权衡将是
特征是利用机器学习模型构建的人工智能分配算法
与历史上的决定相比。总而言之,当前的美国肺分配系统尚未考虑
供者因素对移植后风险预测的贡献,这可能解释为什么LAS-派生的估计
生存福利是不准确的。改进的风险预测将允许优化捐赠者和候选人
匹配,为基于兼容性的系统奠定框架,具有改进供体的潜力
利用率、等待存活率和移植后存活率。使用分阶段建模策略结合传统的
基于回归的方法以及现代机器学习和人工智能方法将鼓励
美国肺分配问题的创新解决方案。这项提议的创新之处进一步增加了一个
独一无二的合格的多学科研究团队,具有复杂系统分析和美国肺的专业知识
分配政策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CARLI LEHR其他文献
CARLI LEHR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CARLI LEHR', 18)}}的其他基金
Developing a Donor-Candidate Risk Prediction System to Optimize Lung Allocation and Transplant Outcomes
开发供者-候选者风险预测系统以优化肺分配和移植结果
- 批准号:
10445446 - 财政年份:2022
- 资助金额:
$ 14.87万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 14.87万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 14.87万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 14.87万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 14.87万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 14.87万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 14.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 14.87万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 14.87万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 14.87万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 14.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists