The Short Course on the Application of Machine Learning for Automated Quantification of Behavior
机器学习在行为自动量化中的应用短期课程
基本信息
- 批准号:10600079
- 负责人:
- 金额:$ 15.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdoptionAlgorithmsAnimal BehaviorAnimalsAutomobile DrivingAwarenessBehaviorBehavioralBehavioral GeneticsBiologicalBiomedical ResearchCollaborationsComplexComputer AnalysisComputer Vision SystemsComputer softwareCreativenessDataData AnalysesData ScienceData SetDatabasesDemocracyDevelopmentDisadvantagedDiseaseEducationEducational process of instructingEducational workshopEnvironmentEthologyExperimental DesignsExplosionFacultyFellowshipFosteringFuture TeacherGenerationsGeneticGenetic ResearchGenomicsGoalsHealthHumanInstitutionKnowledgeLaboratoriesLearningMachine LearningMeasurementMentorsMethodologyMethodsMinority-Serving InstitutionModelingNeurophysiology - biologic functionNeurosciencesNeurosciences ResearchParticipantPerformancePersonsPositioning AttributePostdoctoral FellowProductivityPsychiatryPublic HealthReproducibilityResearchResearch PersonnelResolutionResourcesRunningScheduleScienceScientistStatistical MethodsStructureStudentsTechnologyThe Jackson LaboratoryTrainers TrainingTrainingUnderrepresented MinorityWorkcareercareer developmentcomplex datacomputer sciencedata modelingdata streamsdeep learningdesignexperienceexperimental studygender minoritygraduate studentimprovedinnovationinsightlearning materialslecturesmachine learning methodneuralneural networkneuroethologynext generationnovelprogramsrecruitstatistical learningstatisticssymposiumsynergismtechnology developmenttemporal measurementtoolvirtual
项目摘要
PROJECT SUMMARY/ABSTRACT
Elucidating the mechanism and function of neural encodings and circuit dynamics has been a major challenge
in neuroscience and behavioral analyses. However, quantitative behavior analysis has dramatically accelerated
and improved with the implementation and application of new machine learning methods, including new deep
learning-based methods to track animals at high temporal and spatial resolution. This technology has broad
current and potential application that will impact a breadth of fields that have direct relevance and impact on
studies of human health and disease, including the fields of neuroscience, behavior, genetics, psychiatry, and
biomedicine. However, several roadblocks limit the widespread adoption of these tools and analyses. First, many
tracking and behavior analysis packages require a high level of computational expertise and are thus limited in
application to expert labs. Second, with high-resolution data streams, quantitating behavior requires new
statistical tools and proper modeling of data. Since the application of machine learning to behavioral analyses is
an emerging and key methodology, we recognize an unmet need for investigators in a variety of relevant fields
to learn the fundamentals of its rigorous use. Thus, to train a new generation of interdisciplinary researchers at
the interface of neuroscience, machine learning, and behavior, we propose to establish an annual 4-day
workshop that brings together experts in quantitative behavior, computer vision, and experimental design
to provide a practical introduction to the field of quantitative neuroethology and behavior: we propose the
unique and timely interdisciplinary course The Short Course on the Application of Machine Learning for
Automated Quantification of Behavior at the Jackson Laboratory (JAX). This Short Course will provide attendees
(in-person and virtually) with; information on the state-of-the-art of machine learning based behavior quantitation,
the fundamentals of behavior quantitation, hands-on workshops and data analysis, a forum for student-teacher
interaction for networking, and training at the leading edge of computational ethology. Students will emerge from
the course with the ability to: 1) design a high quality, adequately powered behavior experiment; 2) select and
install a suitable platform for high-resolution analysis of animal behavior; 3) deploy a behavior data analysis
strategy, including collecting new training datasets, training analysis software, and validating performance on
held-out data; and 4) run workflows/pipelines that are necessary to analyze their data following extraction. To
achieve this, we propose: Aim 1. To develop and deliver a 4-day workshop to train scientists on application of
machine learning to animal behavior quantitation. Aim 2. To create an environment that will expand the field of
quantitative behavior analysis by fostering idea generation, discussion, and collaboration to yield new
discoveries, broader applications, and advance technology development. Aim 3. Foster the recruitment and
development of diverse junior investigators in neuroscience, behavioral genetics, and quantitative analysis of
animal behavior.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VIVEK KUMAR其他文献
VIVEK KUMAR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VIVEK KUMAR', 18)}}的其他基金
Machine learning based frailty index for the genetically diverse mice
基于机器学习的遗传多样性小鼠的衰弱指数
- 批准号:
10513177 - 财政年份:2022
- 资助金额:
$ 15.44万 - 项目类别:
Machine learning based frailty index for the genetically diverse mice
基于机器学习的遗传多样性小鼠的衰弱指数
- 批准号:
10688138 - 财政年份:2022
- 资助金额:
$ 15.44万 - 项目类别:
Google Cloud Pipeline for mouse behavior and frailty assessment for the aging research community
Google Cloud Pipeline 用于衰老研究社区的小鼠行为和虚弱评估
- 批准号:
10827671 - 财政年份:2022
- 资助金额:
$ 15.44万 - 项目类别:
Establishment and Characterization of Novel Mutant Mouse Models for the Addiction Research Community
成瘾研究界新型突变小鼠模型的建立和表征
- 批准号:
10647879 - 财政年份:2021
- 资助金额:
$ 15.44万 - 项目类别:
Impacts of Sleep and Circadian Biology on Alzheimer's Disease and Aging: A Focus on Genetics and Genomics
睡眠和昼夜节律生物学对阿尔茨海默病和衰老的影响:关注遗传学和基因组学
- 批准号:
10606644 - 财政年份:2021
- 资助金额:
$ 15.44万 - 项目类别:
Impacts of Sleep and Circadian Biology on Alzheimer's Disease and Aging: A Focus on Genetics and Genomics
睡眠和昼夜节律生物学对阿尔茨海默病和衰老的影响:关注遗传学和基因组学
- 批准号:
10237478 - 财政年份:2021
- 资助金额:
$ 15.44万 - 项目类别:
Impacts of Sleep and Circadian Biology on Alzheimer's Disease and Aging: A Focus on Genetics and Genomics
睡眠和昼夜节律生物学对阿尔茨海默病和衰老的影响:关注遗传学和基因组学
- 批准号:
10378650 - 财政年份:2021
- 资助金额:
$ 15.44万 - 项目类别:
Dissection of Addiction Relevant Signal Integration by Cyfip2 through Precise Genome Engineering
Cyfip2 通过精确基因组工程解析成瘾相关信号整合
- 批准号:
10450066 - 财政年份:2020
- 资助金额:
$ 15.44万 - 项目类别:
Dissection of Addiction Relevant Signal Integration by Cyfip2 through Precise Genome Engineering
Cyfip2 通过精确基因组工程解析成瘾相关信号整合
- 批准号:
10074946 - 财政年份:2020
- 资助金额:
$ 15.44万 - 项目类别:
Dissection of Addiction Relevant Signal Integration by Cyfip2 through Precise Genome Engineering
Cyfip2 通过精确基因组工程解析成瘾相关信号整合
- 批准号:
10424633 - 财政年份:2020
- 资助金额:
$ 15.44万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 15.44万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 15.44万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 15.44万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 15.44万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 15.44万 - 项目类别:
Standard Grant














{{item.name}}会员




