A Multi-Dimensional Linked Registry to Identify Biological, Clinical, Health System, and Socioeconomic Risk Factors for COVID-19-Related Cardiovascular Events
多维关联登记系统,用于识别与 COVID-19 相关的心血管事件的生物、临床、卫生系统和社会经济风险因素
基本信息
- 批准号:10599322
- 负责人:
- 金额:$ 86.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdmission activityAdultAffectAmerican Heart AssociationBiochemicalBiochemical MarkersBiologicalBiological MarkersBlood ProteinsBlood VesselsBlood coagulationBlood specimenCOVID-19COVID-19 patientCOVID-19 riskCardiacCardiovascular DiseasesCardiovascular systemCessation of lifeCharacteristicsClinicalClinical ManagementCommunitiesComprehensive Health CareDangerousnessDataData LinkagesDeep Vein ThrombosisDevelopmentDimensionsDiseaseElderlyEmbolismEventFutureGeographyHealthHealth systemHealthcareHeart ArrestHeart failureHospitalizationHospitalsInstitutionIsraelLinkLongterm Follow-upLungMachine LearningMeasuresMedicalMedical centerMedicareMedicare claimModelingMorbidity - disease rateMyocardial InfarctionMyocarditisOutcomePathologyPatient CarePatient riskPatient-Focused OutcomesPatientsPredictive FactorPrevention approachProteinsProteomicsRegistriesResearchRiskRisk FactorsSARS-CoV-2 infectionSiteSocioeconomic FactorsSourceStandardizationStrokeTimeVentricular ArrhythmiaWorkbiobankbiomarker discoverycardiovascular risk factorcare deliveryclinical phenotypeclinical predictorsclinical riskcohortdata resourcedeprivationdisease registryeconomic indicatoreffective therapyexperienceheart damagehigh riskimprovedindexinginsightmedical information systemmortalityolder patientpandemic diseasepatient subsetspersonalized carepersonalized managementpredictive markerpredictive modelingprognosticrisk predictionruralitysocioeconomics
项目摘要
PROJECT SUMMARY/ABSTRACT
There is mounting concern that patients hospitalized with COVID-19 experience unexpectedly high rates of
cardiac and vascular events. Identifying which patients are at highest risk for COVID-19-related cardiovascular
events and delineating how these events affect short- and long-term outcomes may help support individualized
patient care, illuminate underlying pathophysiologic mechanisms, and accelerate the development of effective
therapies. However, little is known about how multi-dimensional risk factors, including prior medical conditions,
socioeconomic indicators, and circulating levels of biomarkers affect patient outcomes. Building on our
team's expertise in data linkage, prediction modeling, and biomarker discovery, we will create a unique
and powerful linked data resource to characterize the biological, clinical, health system, and
socioeconomic risk factors for the development of cardiovascular sequelae of COVID-19 and examine
their impact on health outcomes. To create this data resource, we have partnered with the American Heart
Association, whose COVID-19 Cardiovascular Disease Registry is actively capturing high-quality, standardized
information on all adults hospitalized with confirmed SARS-CoV-2 infection at >100 U.S. sites spanning 30
states. We will link this registry to comprehensive health care claims, a national socioeconomic deprivation
index, and detailed health care system information. In Aim 1, we will apply traditional and machine learning
approaches to the linked multicenter registry in order to identify the clinical, health system, and socioeconomic
factors that predict in-hospital major adverse cardiovascular events (MACE) among COVID-19 patients. In Aim
2, we will characterize long-term MACE (i.e., at 1 and 2 years after discharge from the index COVID-19
hospitalization) among older adults in a large multicenter registry linked with longitudinal Medicare claims, and
identify the clinical, health system, and socioeconomic factors that predict their occurrence. Based on this
work, we will create clinically implementable risk scores which will estimate, at the time of admission for and
discharge from an index COVID-19 hospitalization, a patient's risk of developing a major cardiovascular event.
In Aim 3, we evaluate the proteomic profiles of a subset of patients in the linked registry with biobanked serial
blood samples, and identify biochemical markers that predict the occurrence of MACE, both during index
hospitalization for COVID-19 and after discharge. This research will advance our collective understanding of
the biological, clinical, and socioeconomic predictors of COVID-19-related cardiovascular morbidity and
mortality. By identifying patients at greatest at risk of cardiovascular events, our work will help frontline
clinicians better individualize clinical management strategies and health systems improve care delivery during
future waves of the pandemic.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT E GERSZTEN其他文献
ROBERT E GERSZTEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT E GERSZTEN', 18)}}的其他基金
Biochemical profiling to identify cardiometabolic responsiveness to an endurance exercise intervention
通过生化分析来确定心脏代谢对耐力运动干预的反应
- 批准号:
10547825 - 财政年份:2021
- 资助金额:
$ 86.58万 - 项目类别:
A Multi-Dimensional Linked Registry to Identify Biological, Clinical, Health System, and Socioeconomic Risk Factors for COVID-19-Related Cardiovascular Events
多维关联登记系统,用于识别与 COVID-19 相关的心血管事件的生物、临床、卫生系统和社会经济风险因素
- 批准号:
10376347 - 财政年份:2021
- 资助金额:
$ 86.58万 - 项目类别:
A Multi-Dimensional Linked Registry to Identify Biological, Clinical, Health System, and Socioeconomic Risk Factors for COVID-19-Related Cardiovascular Events
多维关联登记系统,用于识别与 COVID-19 相关的心血管事件的生物、临床、卫生系统和社会经济风险因素
- 批准号:
10183512 - 财政年份:2021
- 资助金额:
$ 86.58万 - 项目类别:
Biochemical profiling to identify cardiometabolic responsiveness to an endurance exercise intervention
通过生化分析来确定心脏代谢对耐力运动干预的反应
- 批准号:
10096791 - 财政年份:2021
- 资助金额:
$ 86.58万 - 项目类别:
Metabolite profiles and the risk of diabetes in Asians
亚洲人的代谢特征和糖尿病风险
- 批准号:
10227610 - 财政年份:2021
- 资助金额:
$ 86.58万 - 项目类别:
Biochemical profiling to identify cardiometabolic responsiveness to an endurance exercise intervention
通过生化分析来确定心脏代谢对耐力运动干预的反应
- 批准号:
10363615 - 财政年份:2021
- 资助金额:
$ 86.58万 - 项目类别:
Plasma Proteome and Risk of Alzheimer Dementia and Related Endophenotypes in the Framingham Study
弗雷明汉研究中的血浆蛋白质组和阿尔茨海默氏痴呆症及相关内表型的风险
- 批准号:
9763974 - 财政年份:2019
- 资助金额:
$ 86.58万 - 项目类别:
Plasma proteomics in CHS and population biology
CHS 和群体生物学中的血浆蛋白质组学
- 批准号:
9815869 - 财政年份:2019
- 资助金额:
$ 86.58万 - 项目类别:
Metabolic Phenotyping and Pharmocokinetics Core
代谢表型和药代动力学核心
- 批准号:
10426365 - 财政年份:2019
- 资助金额:
$ 86.58万 - 项目类别:
Plasma proteomics in CHS and population biology
CHS 和群体生物学中的血浆蛋白质组学
- 批准号:
9976578 - 财政年份:2019
- 资助金额:
$ 86.58万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 86.58万 - 项目类别:
Research Grant














{{item.name}}会员




