Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
基本信息
- 批准号:10599887
- 负责人:
- 金额:$ 37.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsActinsAcuteAffectAnxietyArchitectureAuditoryBehaviorBehavior DisordersBehavioralBindingBiologicalBiological ModelsBrainBypassCalciumCellsCellular MorphologyClinicalComplexCritical PathwaysCytoplasmCytoskeletonDLG4 geneDataDefectDetectionDevelopmentDiseaseElectrophysiology (science)Enabling FactorsEpilepsyEquilibriumEsthesiaExcitatory SynapseFMR1FiberFoundationsGeneticGlutamatesGoalsHair CellsHypersensitivityImageInhibitory SynapseInterneuronsLabelLaboratoriesLinkMeasuresMediatingMolecularMolecular GeneticsMotor NeuronsMovementMutagenesisNervous SystemNervous System PhysiologyNeurologic DysfunctionsNeuronsNeurophysiology - biologic functionOpticsPathway interactionsPeripheralPhenotypePolymersPopulationRNARegulationReproducibilityResearchRoleSchizophreniaSensorySiteStartle ReactionStereotypingStimulusStructureSynapsesTestingTherapeutic InterventionTransgenic OrganismsTranslational RepressionTranslationsVariantWorkZebrafishaddictionauditory stimulusautism spectrum disorderbasebehavioral phenotypingbehavioral responsecell typedensityexperiencegenome wide screengephyrinhindbrainhuman diseaseimaging approachin vivo imagingmolecular modelingmutantneuralneural circuitneuronal circuitryneuropsychiatric disordernoveloptogeneticspolymerizationprogramspromoterprotein protein interactionresponsescaffoldsensory processing disordersensory stimulussoundtool
项目摘要
Project Summary. A fundamental function of the nervous system is to distinguish between threatening and non-
threatening stimuli. For example, a sudden intense sound that indicates danger should trigger an acoustic startle
response, but an innocuous sound should not. This type of behavioral threshold is a basic mechanism for
sensorimotor filtering, and the importance of setting this threshold appropriately is highlighted by the startle
hypersensitivity observed in neuropsychiatric diseases such as autism, anxiety, and schizophrenia. Despite its
importance, and in contrast to our knowledge of experience-dependent startle modulation, the molecular and
cellular pathways that establish and maintain the innate startle threshold are not well characterized. By
developing a more complete understanding of the biological mechanisms that govern the startle threshold, we
can generate new hypotheses about the neural bases for these diseases. This project will leverage the powerful
larval zebrafish model system to investigate the molecular-genetic and neural circuit bases of the startle
threshold. Here a simple, conserved, and genetically accessible circuit drives a stereotyped startle response,
with auditory afferents triggering reticulospinal neurons to activate motor neurons and initiate movement. In a
recent genome-wide screen, we identified a novel regulator of the innate startle threshold: cytoplasmic Fragile X
mental retardation protein (FMRP) interacting protein 2 (cyfip2). cyfip2 mutants are hypersensitive and startle to
low intensity sounds that rarely startle wild-types. Cyfip2 acts through FMRP and eIF4E to regulate RNA
translation, but it can also control actin polymerization through interactions with Rac1 and the WAVE regulatory
complex (WRC). In Aim 1 we will systematically test which of these molecular pathways cyfip2 uses to establish
the startle threshold and to maintain it through development. In Aim 2 we will define the cellular basis for cyfip2-
mediated threshold control by first locating the site of the primary circuit defect with optogenetic and calcium
imaging approaches and then identifying the cell types in which cyfip2 is needed for normal startle sensitivity.
Finally, our data show that acute manipulation of the actin cytoskeleton substantially alters the startle threshold
while also decreasing the number and size of excitatory synapses in inhibitory glycinergic neurons but not
excitatory glutamatergic neurons. In Aim 3 we will test the hypothesis that cyfip2 acts cell-autonomously to
maintain excitatory/inhibitory synaptic balance, combining behavioral recording with live imaging of neuronal
activity and synaptic scaffolds to define direct links between cyfip2, circuit structure and function, and behavior.
Overall, the results of this work will generate a detailed model of molecular and cellular pathways that control
the startle behavior threshold and lay a foundation for understanding how these may be affected in human
disease.
项目摘要。神经系统的一个基本功能是区分威胁性和非威胁性。
威胁性的刺激例如,一个突然的强烈的声音,表明危险应该触发一个声学惊吓
一个无害的声音不应该。这种行为阈值是一种基本机制,
感觉运动过滤,设置这个阈值适当的重要性是突出的惊吓
在神经精神疾病如自闭症、焦虑症和精神分裂症中观察到的超敏反应。尽管
重要性,与我们对经验依赖性惊吓调节的知识相反,分子和
建立和维持先天惊吓阈值的细胞途径还没有得到很好的表征。通过
为了更全面地了解控制惊吓阈值的生物机制,我们
可以产生关于这些疾病的神经基础的新假设。这个项目将利用强大的
斑马鱼幼鱼模型系统研究惊跳的分子遗传和神经回路基础
阈值在这里,一个简单的,保守的,遗传上可访问的电路驱动着一个刻板的惊吓反应,
听觉传入触发网状脊髓神经元以激活运动神经元并启动运动。中
在最近的全基因组筛选中,我们发现了一种新的先天惊吓阈值调节因子:细胞质脆性X
精神发育迟滞蛋白(FMRP)相互作用蛋白2(cyfip 2)。cyfip 2突变体是高度敏感的,
低强度的声音很少惊吓野生动物Cyfip 2通过FMRP和eIF 4 E调节RNA
翻译,但它也可以通过与Rac 1和WAVE调节蛋白的相互作用来控制肌动蛋白聚合。
复合物(WRC)。在目标1中,我们将系统地测试cyfip 2使用哪些分子途径来建立
惊吓阈值,并通过发展来维持它。在目标2中,我们将定义cyfip 2的细胞基础。
介导的阈值控制,首先用光遗传学和钙离子标记定位初级回路缺陷的位点,
成像方法,然后鉴定其中正常惊吓敏感性需要CyFIP 2的细胞类型。
最后,我们的数据表明,急性操纵肌动蛋白细胞骨架大大改变了惊吓阈值
同时减少抑制性甘氨酸能神经元兴奋性突触的数量和大小,
兴奋性神经元在目标3中,我们将检验cyfip 2细胞自主作用的假设,
维持兴奋性/抑制性突触平衡,将行为记录与神经元的实时成像相结合
活性和突触支架来定义cyfip 2、电路结构和功能以及行为之间的直接联系。
总的来说,这项工作的结果将产生一个详细的分子和细胞途径的模型,控制
并为理解这些在人类中如何受到影响奠定了基础
疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kurt C. Marsden其他文献
Kurt C. Marsden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kurt C. Marsden', 18)}}的其他基金
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
- 批准号:
10360545 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Molecular and Cellular Mechanisms of Acoustic Startle Threshold Regulation
声惊吓阈值调节的分子和细胞机制
- 批准号:
10211396 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Cellular and Molecular Mechanisms of Behavioral Dysfunction in a Zebrafish Model of CHARGE Syndrome
电荷综合征斑马鱼模型行为障碍的细胞和分子机制
- 批准号:
10372659 - 财政年份:2021
- 资助金额:
$ 37.37万 - 项目类别:
Genetic Analysis of Acoustic Startle Behavior and Circuits
声惊吓行为和电路的遗传分析
- 批准号:
8447646 - 财政年份:2012
- 资助金额:
$ 37.37万 - 项目类别:
Genetic Analysis of Acoustic Startle Behavior and Circuits
声惊吓行为和电路的遗传分析
- 批准号:
8254236 - 财政年份:2012
- 资助金额:
$ 37.37万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 37.37万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 37.37万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 37.37万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 37.37万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 37.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 37.37万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 37.37万 - 项目类别: