Mitochondrial control of protein translation in Fragile X
脆性 X 蛋白翻译的线粒体控制
基本信息
- 批准号:10599936
- 负责人:
- 金额:$ 62.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAcuteAffectAgeApoptoticAttenuatedBCL2L1 geneBehaviorBehavioralBindingBinding ProteinsBrainCardiac MyocytesCell DeathCell RespirationCellsCoenzyme Q10CrossbreedingDataDefectDendritic SpinesDevelopmentEventFMR1FibroblastsFluorescence Resonance Energy TransferFragile X SyndromeGene SilencingGeneticHumanImageImmune systemInheritedInner mitochondrial membraneIntellectual functioning disabilityLearningMeasuresMembraneMemory impairmentMessenger RNAMetabolicMetabolismMitochondriaMitochondrial Proton-Translocating ATPasesMorphologyMusNeuronsOxidative PhosphorylationOxygenPathologicPatientsPeptide Elongation Factor 2PhenotypePhosphorylationPotential EnergyPredispositionProductionProsencephalonProtein DeficiencyProteinsProteomeProtonsPublishingReagentResistanceRespirationRoleSeizuresStimulusStructureSynapsesSynaptic plasticitySynaptosomesTestingTranslationsVesicleWestern BlottingWorkaudiogenic seizureautism spectrum disorderbehavioral phenotypingblood-brain barrier crossingbrain dysfunctiondevelopmental geneticsgene functionin vivoloss of functionmRNA ExpressionmRNA Translationmitochondrial membranemitochondrial metabolismneuron losspatch clamppharmacologicpreventprotein expressionresponsesensory stimulusstoichiometrysynaptogenesistranslational potential
项目摘要
Abstract
Loss of function of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) results
in unregulated mRNA translation and aberrant synaptic morphology. We find that mitochondria in
neurons of the Fmr1-/y mouse have an inner membrane leak that undermines ATP synthesis and
contributes to a replicative phenotype that is a hallmark of immature, dividing cells. Previous work
in cardiomyocytes showed that developmental maturation is dependent on closure of a
mitochondrial membrane leak. We now find that mild depletion of ATP synthase c-subunit to
reduce the leak or inhibition of the c-subunit leak with ATP synthase interacting agents decreases
mRNA translation in Fmr1-/y mouse neurons and human fibroblasts. Leak inhibition alters
metabolism in favor of oxidative phosphorylation. The developmental metabolic switch may be
dependent on stimulus-induced phosphorylation of translation elongation factor 2 (EF2), an event
which is lacking in Fmr1-/y synapses. Our data support a role for mitochondrial inner membrane
efficiency in determining the rate and type of protein translation. We suggest that increased
oxidative phosphorylation efficiency induced by closure of the ATP synthase c-subunit leak
channel produces mitochondrial ATP in response to synaptic stimulation to phosphorylate EF2
and change the synaptic proteome. Thus, we will determine if pharmacological reagents that
decrease inner membrane leak will do so in recordings of mitochondria isolated from Fmr1-/y
synapses and if these reagents reverse the change in ATP synthase stoichiometry that causes
increased c-subunit expression and inner mitochondrial membrane leak in the Fmr1-/Y mouse
(Aim#1). We will assess synapse formation and plasticity (Aim #2) and behavior (Aim #3) following
closure of the leak in cultured neurons or in vivo using dexpramipexole (Dex) and CoQ10. Dex is
a cell death modulator that binds to the OSCP/b subunit of ATP synthase and closes the ATP
synthase leak without affecting the immune system. It readily crosses the blood brain barrier,
enhances ATP production in neurons and was recently studied in patients. Thus, both Dex and
CoQ10 have excellent translational potential if successful. Finally, we will cross breed Fmr1-/Y
mice with mice harboring a genetically modified ATP synthase c-subunit ring to determine if
genetic reduction of the inner membrane leak rescues the FX synaptic phenotype. We suggest
that FMRP regulates a stimulus-dependent change in mitochondrial metabolism required for
normal synaptic development and plasticity.
摘要
脆性X智力低下蛋白编码基因(Fmr1)功能丧失的研究结果
在不受调控的mRNA翻译和异常突触形态中。我们发现体内的线粒体
Fmr1/y小鼠的神经元有一个内膜泄漏,破坏了ATP的合成和
有助于复制表型,这是未成熟、分裂细胞的标志。以前的工作
在心肌细胞中的研究表明,发育成熟依赖于一个
线粒体膜渗漏。我们现在发现,ATP合成酶c-亚基轻度耗尽到
用三磷酸腺苷合成酶相互作用剂减少泄漏或抑制c-亚基泄漏
Fmr1-/y小鼠神经元和人成纤维细胞的mRNA翻译。防泄漏改变了
有利于氧化磷酸化的代谢。发育代谢开关可能是
依赖于刺激诱导的翻译延长因子2(EF2)的磷酸化,一种事件
这在Fmr1-/y突触中是缺乏的。我们的数据支持线粒体内膜的作用
在决定蛋白质翻译的速度和类型方面的效率。我们建议增加
封闭三磷酸腺苷合成酶c-亚基泄漏诱导的氧化磷酸化效率
突触刺激使EF2磷酸化后,通道产生线粒体ATP
改变突触蛋白质组。因此,我们将确定药理试剂是否
从Fmr1-/y分离的线粒体的记录中将减少内膜泄漏
突触以及这些试剂是否逆转了导致
Fmr1-/Y小鼠c-亚基表达增加和线粒体膜内漏
(目标1)。接下来我们将评估突触的形成和可塑性(目标2)和行为(目标3)
用地塞米松(Dex)和辅酶Q10封闭培养的神经元或体内的渗漏。德克斯是
一种细胞死亡调节剂,与三磷酸腺苷合成酶的OSCP/b亚单位结合并关闭三磷酸腺苷
合酶泄漏,不影响免疫系统。它可以轻易地穿过血脑屏障,
增强神经元中的ATP生成,最近在患者中进行了研究。因此,Dex和
如果成功,CoQ10具有极好的翻译潜力。最后,我们将杂交Fmr1-/Y
携带转基因三磷酸腺苷合成酶c亚单位环的小鼠以确定
内膜渗漏的遗传减少挽救了FX突触表型。我们建议
FMRP调节线粒体代谢的刺激依赖性变化,所需的
正常的突触发育和可塑性。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kambiz Nassirpour Alavian其他文献
Kambiz Nassirpour Alavian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kambiz Nassirpour Alavian', 18)}}的其他基金
Mitochondrial control of protein translation in Fragile X
脆性 X 蛋白翻译的线粒体控制
- 批准号:
10379427 - 财政年份:2019
- 资助金额:
$ 62.31万 - 项目类别:
Role of Bcl-xL in neuronal mitochondrial calcium dynamics
Bcl-xL 在神经元线粒体钙动力学中的作用
- 批准号:
8604982 - 财政年份:2013
- 资助金额:
$ 62.31万 - 项目类别:
Role of Bcl-xL in neuronal mitochondrial calcium dynamics
Bcl-xL 在神经元线粒体钙动力学中的作用
- 批准号:
8688373 - 财政年份:2013
- 资助金额:
$ 62.31万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 62.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 62.31万 - 项目类别:
Operating Grants