Infrared Spectroscopic Imaging and Machine Learning for Risk Stratification of Oral Epithelial Dysplasia
红外光谱成像和机器学习用于口腔上皮发育不良的风险分层
基本信息
- 批准号:10606086
- 负责人:
- 金额:$ 23.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyArtificial IntelligenceBenignBiochemicalBiologicalBiological MarkersBiopsyCarbohydratesCharacteristicsClassificationClinicalCoupledDataDevelopmentDiagnosisDiagnosticDiscriminationDisease ProgressionEpitheliumEvaluationFingerprintFourier TransformFunctional ImagingFutureGoalsHematoxylin and Eosin Staining MethodHistologicHistopathologic GradeImageImage AnalysisImmunohistochemistryIndividualInterventionIntraepithelial NeoplasiaLabelLesionLipidsMachine LearningMalignant - descriptorMedicalMethodsMicroscopeMicroscopicMolecularMolecular ProfilingMonitorMorphologyNatureNucleic AcidsOral DiagnosisOral cavityOral mucous membrane structureOutcomePatientsPerformancePremalignant CellPreventionPrognosisProteinsResearchResearch DesignRiskRisk AssessmentSamplingSpectrum AnalysisStainsStratificationSubgroupSystemTechniquesTestingTissue ExtractsTissuesTrainingValidationWorkWorld Health Organizationabsorptioncancer diagnosisdigital pathologyefficacy evaluationevidence basefeature extractionhigh riskimaging approachimaging modalityimaging systeminnovationmachine learning classifiermalignant mouth neoplasmmodel developmentmouth squamous cell carcinomamultimodalitynovelnovel strategiesoral carcinogenesisoral cavity epitheliumoral lesionoral tissuepremalignantpreventrisk stratificationspectroscopic imagingtool
项目摘要
PROJECT SUMMARY/ABSTRACT
Successful treatment and management of oral mucosal lesions depend on a definitive, accurate, and timely
diagnosis. Despite easy accessibility to the oral cavity, oral squamous cell carcinoma (OSCC), the most common
oral cancer, is often not diagnosed until late stages, leading to a poor prognosis. Oral epithelial dysplasia (OED)
is a microscopically diagnosed precancerous lesion associated with an increased risk of OSCC transformation.
An OED can be histologically graded as mild, moderate, or severe based on the World Health Organization’s
three-tier classification system. Unfortunately, the gold standard histopathological diagnosis relies on subjective
morphological evaluation of the biopsy tissue and is unable to identify high-risk OEDs that are most likely to
undergo malignant transformation. The lack of an objective and quantitative OED risk stratification approach has
prevented effective management of precancerous oral lesions and delayed the diagnosis of OSCC. We propose
a novel approach using Fourier transform infrared spectroscopic (FTIR) imaging and machine learning to
address the medical gap of objective OED risk assessment. FTIR spectroscopy provides quantitative
biochemical information of a sample in the form of characteristic absorption spectrum. With a microscope
coupled to an FTIR spectrometer, FTIR imaging allows detailed and spatially resolved biochemical analysis of a
sample, with each pixel containing a full FTIR spectrum. Machine learning is a powerful tool for hyperspectral
FTIR image analysis and diagnostic model development. Using FTIR imaging aided by machine learning, we
successfully trained three machine learning classifiers with 95–100% accuracy in discriminating OSCC from
benign oral tissues in our preliminary study. More excitingly, our results demonstrated an innovative stratification
of severe OEDs into Benign-like and OSCC-like subgroups based on their epithelial FTIR fingerprints. Inspired
by the early finding, the central hypothesis of this proposal is that FTIR imaging aided by machine learning
provides objective and quantitative OED risk stratification. To test the hypothesis, we propose the following two
specific aims: 1) to develop OSCC-Benign classifiers based on epithelial and stromal FTIR fingerprints, and 2)
to evaluate the feasibility of the FTIR image-based approach in OED risk stratification. The long-term goal of the
research is to develop an artificial intelligence aided precision imaging system using FTIR imaging or in
combination with other morphological and functional imaging modalities such as digital pathology and
immunohistochemistry for early oral cancer diagnosis, treatment, and prevention.
项目总结/摘要
口腔粘膜病变的成功治疗和管理依赖于明确、准确和及时的
诊断.尽管容易进入口腔,但口腔鳞状细胞癌(OSCC),最常见的
口腔癌通常直到晚期才被诊断出来,导致预后不良。口腔上皮发育不良(OED)
是一种显微镜下诊断的癌前病变,与口腔鳞状细胞癌转化的风险增加有关。
根据世界卫生组织的组织学分级,OED可分为轻度、中度或重度。
三级分类系统。不幸的是,黄金标准的组织病理学诊断依赖于主观
活检组织的形态学评价,无法识别最有可能
经历恶性转化。由于缺乏客观和定量的OED风险分层方法,
阻止了对癌前口腔病变的有效治疗,并延迟了OSCC的诊断。我们提出
一种使用傅里叶变换红外光谱(FTIR)成像和机器学习的新方法,
解决客观OED风险评估的医学差距。FTIR光谱提供定量
以特征吸收光谱的形式提供样品的生化信息。用显微镜
与FTIR光谱仪耦合,FTIR成像允许对一种生物样品进行详细的和空间分辨的生化分析。
样品,每个像素包含完整的FTIR光谱。机器学习是高光谱分析的有力工具
FTIR图像分析和诊断模型开发。使用机器学习辅助的FTIR成像,我们
成功训练了三个机器学习分类器,在区分OSCC和
良性口腔组织的初步研究。更令人兴奋的是,我们的研究结果显示了一种创新的分层方法,
根据其上皮FTIR指纹,将重度OED分为良性样和OSCC样亚组。启发
根据早期的发现,该提案的中心假设是,机器学习辅助的FTIR成像
提供客观和定量的OED风险分层。为了验证这个假设,我们提出了以下两个假设:
具体目标:1)开发基于上皮和基质FTIR指纹的OSCC良性分类器,以及2)
评估FTIR图像为基础的方法在OED危险分层的可行性。的长期目标
研究是开发一种人工智能辅助精确成像系统,使用FTIR成像或
与其他形态学和功能成像模式的组合,例如数字病理学,
免疫组化用于早期口腔癌诊断、治疗和预防。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONG WANG其他文献
YONG WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YONG WANG', 18)}}的其他基金
Development of multifunctional resins for robust dentin bonding
开发用于牢固牙本质粘合的多功能树脂
- 批准号:
10412961 - 财政年份:2018
- 资助金额:
$ 23.21万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8470618 - 财政年份:2011
- 资助金额:
$ 23.21万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8183962 - 财政年份:2011
- 资助金额:
$ 23.21万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8668767 - 财政年份:2011
- 资助金额:
$ 23.21万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8868096 - 财政年份:2011
- 资助金额:
$ 23.21万 - 项目类别:
Multifunctional, Non-thermal Plasmas for Long-lasting Dental Adhesion
多功能非热等离子体可实现持久的牙齿粘合力
- 批准号:
8288699 - 财政年份:2011
- 资助金额:
$ 23.21万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7383815 - 财政年份:2006
- 资助金额:
$ 23.21万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7100564 - 财政年份:2006
- 资助金额:
$ 23.21万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7197353 - 财政年份:2006
- 资助金额:
$ 23.21万 - 项目类别:
Effect of Noise Induced Hearing Loss on AVCN Principal Neurons
噪声性听力损失对 AVCN 主神经元的影响
- 批准号:
7486435 - 财政年份:2006
- 资助金额:
$ 23.21万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 23.21万 - 项目类别:
Research Grant