Calcium Signaling in Peripheral Sensory Nerve Endings
周围感觉神经末梢的钙信号传导
基本信息
- 批准号:10606853
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAfferent NeuronsAmericanAnalgesicsAttenuatedBehaviorBehavior assessmentBehavioralBrainCalciumCalcium ChannelCalcium Channel BlockersCalcium SignalingCapsaicinCentral Nervous SystemCollaborationsCommunicationComputational TechniqueDataDependenceDevelopmentEnvironmentEventFellowshipGeneticHypersensitivityImageImaging TechniquesIndividualInflammationInjuryInvestigationKnowledgeLifeMachine LearningMaintenanceMeasuresMechanicsMechanoreceptorsMediatingMethodologyMethodsModalityMusNerve EndingsNervous SystemNeuroimmuneNeuronal PlasticityNeuronsNociceptorsOutputPainPeripheralPeripheral NervesPharmacologyPlayPopulationProcessPythonsReceptor ActivationResearchResistanceResourcesRoleScienceScientistSensorySensory Nerve EndingsSensory ReceptorsSignal PathwaySignal TransductionSiteSkinSpeedSpinal CordStimulusSynaptic plasticityTherapeuticTimeTouch sensationTrainingUniversitiesViral VectorWorkbehavioral responsecareerchronic painchronic painful conditiondelivery vehicleexperienceexperimental studyimprovedin vivoin vivo calcium imagingin vivo imaginginsightintercellular communicationinterestlarge datasetsmechanotransductionmouse modelneurogeneticsneurotransmissionnoveloptogeneticspain behaviorpharmacologicprescription opioidsensory stimulusside effectskillsstatisticstherapeutic targettooltransmission processtwo-photonvoltage
项目摘要
PROJECT SUMMARY
Millions of Americans suffer from unrelenting chronic pain conditions that are resistant to existing
treatments, and those who turn to opioid medication can develop dependencies that are devastating and
life threatening. There is essential need for more effective, non-addictive analgesics with limited side
effects. Voltage-gated calcium (CaV) channels are potential targets for improved pain therapeutics. CaV
channels are critical in altering sensory neuron sensitivity and in transmitting information about noxious
stimuli. Changes in sensitivity of sensory neurons to stimuli – such as heat and touch - can result in
transient forms of hypersensitivity and, if the stimulus is prolonged or especially intense, more prolonged
hypersensitivity, which can lead to chronic pain. CaV channels in the spinal cord are important for the
induction and maintenance of hypersensitivity, but the Lipscombe lab has recently shown that peripheral
CaV2.2 channels in heat sensing neurons in skin are also critical for this process. This proposal will
expand this discovery to investigate the functional contribution of peripheral CaV channels to
hypersensitivity in Trpv1-nociceptor and Aδ low threshold mechanoreceptor (Aδ LTMR) nerve endings in
skin. In Aim 1, optogenetics and automated, real-time behavior tracking with high-speed videography will
be combined to assess behavioral responses induced by direct activation of either Trpv1-nociceptor
(heat-sensing) or Aδ LTMRs (mechano-sensing). Changes in evoked behavior will be assessed following
sensitization of either neuron population as well as the potential for selective inhibition of peripheral CaV
channels to attenuate these outputs. Aim 2 will investigate intracellular calcium dynamics in nerve
endings in skin associated with the development of hypersensitivity. Integration of optogenetics, 2-photon
in vivo calcium imaging, and pharmacology, will uncover the individual contribution of CaV2.2 and CaV3.2
channels to calcium events in Trpv1-nociceptor and Aδ LTMRs that trigger hypersensitivity. This work
will provide unique data on the role of peripheral CaV channels in the induction of hypersensitivity and
may identify novel sites of action for developing more effective pain therapeutics, thereby reducing
unwanted side effects from actions in the central nervous system. The proposed research builds on the
applicant’s experience and provides an opportunity to develop unique expertise in genetic, behavioral, 2-
photon imaging and computation techniques. Collaborating with the Fleischmann and Moore labs for 2-
photon calcium imaging gives the applicant essential experience in team science and integrating across
different levels of investigation. This fellowship will also support the applicant’s professional development
in rigorous scientific methods and effective scientific communication. The Brain Science environment at
Brown University is exceptional for training, it provides numerous avenues for support, training, and
resources to prepare the applicant for a career as an independent academic scientist.
项目概要
数以百万计的美国人患有持续不断的慢性疼痛,这些疼痛对现有的药物有抵抗力。
治疗,以及那些转向阿片类药物的人可能会产生毁灭性的依赖性
危及生命。迫切需要更有效、非成瘾且副作用有限的镇痛药
影响。电压门控钙(CaV)通道是改善疼痛治疗的潜在目标。冠状病毒
通道对于改变感觉神经元敏感性和传输有害信息至关重要
刺激。感觉神经元对刺激(例如热和触摸)敏感性的变化可能会导致
短暂形式的超敏反应,如果刺激时间较长或特别强烈,则时间会更长
过敏,可导致慢性疼痛。脊髓中的 CaV 通道对于
诱导和维持超敏反应,但利普斯科姆实验室最近表明,外周
皮肤热传感神经元中的 CaV2.2 通道对于这一过程也至关重要。该提案将
扩展这一发现以研究外周 CaV 通道的功能贡献
Trpv1 伤害感受器和 Aδ 低阈值机械感受器 (Aδ LTMR) 神经末梢超敏反应
皮肤。在目标 1 中,光遗传学和利用高速摄像的自动化实时行为跟踪将
结合起来评估由直接激活 Trpv1 伤害感受器引起的行为反应
(热传感)或 Aδ LTMR(机械传感)。将评估诱发行为的变化
任一神经元群的敏化以及选择性抑制外周 CaV 的潜力
衰减这些输出的通道。目标 2 将研究神经细胞内钙动态
皮肤末端与超敏反应的发展有关。光遗传学整合,2-光子
体内钙成像和药理学将揭示 CaV2.2 和 CaV3.2 的个体贡献
Trpv1 伤害感受器和 Aδ LTMR 中触发超敏反应的钙事件的通道。这部作品
将提供关于外周 CaV 通道在诱导超敏反应中的作用的独特数据
可能会确定新的作用位点以开发更有效的疼痛治疗方法,从而减少
中枢神经系统活动产生的不良副作用。拟议的研究建立在
申请人的经验,并提供机会发展遗传、行为、2-
光子成像和计算技术。与 Fleischmann 和 Moore 实验室合作 2-
光子钙成像为申请人提供了团队科学和跨领域整合的重要经验
不同级别的调查。该奖学金还将支持申请人的专业发展
严谨的科学方法和有效的科学交流。脑科学环境
布朗大学在培训方面非常出色,它提供了多种支持、培训和培训的途径
为申请人作为独立学术科学家的职业生涯做好准备的资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Remy Meir其他文献
Remy Meir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 4.77万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 4.77万 - 项目类别:
Discovery Grants Program - Individual