Cellular and molecular mechanisms of cold-adapted mechanosensation in the hibernating squirrel
冬眠松鼠冷适应机械感觉的细胞和分子机制
基本信息
- 批准号:10607174
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-16 至 2025-10-15
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsBody TemperatureCellsCharacteristicsClinicalCuesDataDropsElectrophysiology (science)FiberGoalsHomeostasisIn Situ HybridizationIndividualIon ChannelIon Channel GatingIonsK ATPaseKineticsLaboratoriesLightMammalsMechanicsMechanoreceptorsMembrane PotentialsMethodsModalityModificationMolecularMolecular ProfilingMusNerveNervous SystemNeuronsNeurophysiology - biologic functionNociceptionOrganPerioperativePeripheralPhysiologicalPiezo 2 ion channelProceduresPropertyPumpResistanceRestRoleSeasonsSensorySignal TransductionSkinSpermophilusSpinal GangliaSquirrelStimulusTactileTemperatureTouch sensationUniversitiesVoltage-Gated Potassium ChannelWhole-Cell RecordingsWorkcell typecold temperaturecostexperimental studymechanotransductionnatural hypothermianeurobiological mechanismnovelpatch clamppreservationpressureresponsetranscriptome sequencingvoltage
项目摘要
PROJECT SUMMARY
The thirteen-lined ground squirrel is an obligate hibernator that seasonally drops its body temperature from
37° in the active state to 2-4°C during torpor. While such temperatures typically inhibit peripheral signaling in
mammals, torpid squirrels remain sensitive to tactile cues and can be awakened by the sense of touch
(mechanosensation). However, the neurobiological mechanisms involved remain unknown. The long-term
goal of this study is to identify the cellular and molecular signatures that afford cold-resistant
mechanosensation to support extreme thermal tolerance in mammals.
Pressure stimuli are sensed by a specialized subset of neurons in the dorsal root ganglion (DRG) known as
mechanoreceptors. Mechanically gated ion channels such as Piezo2 convert pressure into ionic current that
activates voltage-gated ion channels, which relay the signal downstream through action potentials (APs).
Piezo2 and voltage-gated ion channels have temperature-dependent dynamics ripe for evolutionary
manipulations permitting thermal resistance. This study, which will be conducted at the laboratories of Drs.
Elena Gracheva and Slav Bagriantsev at Yale University, assesses the central hypothesis that ion channel
modifications in mechanoreceptors underlie cold-adapted mechanosensation in the thirteen-lined ground
squirrel.
Past work from the Gracheva and Bagriantsev labs has shown that this species shows constitutively low
thermosensitivity and decreased function of nociceptive AP machinery during torpor. Our preliminary work also
shows that mechanosensitive currents are preserved during torpor. Accordingly, we use a combination of in
situ hybridization, RNA sequencing and electrophysiology to assess whether squirrel DRG neurons have
selectively potentiated mechanosensitivity at the cost of other sensory modalities, relative to mouse
DRG neurons (Aim 1). Moreover, cold exposure widens APs and disrupts voltage gradients in typical
mammalian neurons due to slowed kinetics of the Na+/K+ ATPase pump. In contrast, our preliminary work
shows that cold-exposed torpid neurons show decreased AP widening and intact resting membrane potential.
In light of these data, we use whole-cell and ex vivo electrophysiology to assess whether squirrel
mechanoreceptors have cold-resistant electrogenic machinery (Aim 2).
To the best of our knowledge, this study represents the first attempt to dissect cellular mechanisms of cold-
adapted mechanosensation in mammals. Elucidating neural function in extreme cold has the potential to
provide novel targets for combatting neuronal damage following clinical hypothermic procedures.
项目总结
十三行地松鼠是一种专属的冬眠动物,它会季节性地将体温从
在活动状态下为37°C,在昏迷期间为2-4℃。虽然这样的温度通常会抑制外周信号
哺乳动物,迟钝的松鼠仍然对触觉信号敏感,并能被触觉唤醒
(机械传感)。然而,其中涉及的神经生物学机制仍不清楚。长期的
这项研究的目标是确定提供耐寒能力的细胞和分子特征
支持哺乳动物极端耐热性的机械感觉。
压力刺激是由背根神经节(DRG)中一个特殊的神经元亚群感知的,称为
机械感受器。机械门控离子通道,如Piezo2,将压力转换为离子电流,
激活电压门控离子通道,该通道通过动作电位(AP)向下游传递信号。
Piezo2和电压门控离子通道具有进化的温度依赖动力学
允许热阻的操控。这项研究将在戴维斯博士的实验室进行。
耶鲁大学的Elena Gracheva和Slav Bagriantsev评估了离子通道的中心假说
机械感受器的修饰是十三行地面冷适应机械感觉的基础
松鼠。
Gracheva和Bagriantsev实验室过去的工作表明,这个物种表现出结构性的低
麻木状态下伤害性AP机械的温度敏感性和功能下降。我们的前期工作也
显示机械敏感电流在昏迷期间保持不变。因此,我们使用中的组合
用原位杂交、RNA测序和电生理学方法评价松鼠背根神经节神经元是否有
与小鼠相比,选择性地增强了机械敏感性,代价是其他感觉方式
背根神经节神经元(目标1)。此外,冷暴露会扩大AP并扰乱典型的
哺乳动物神经元由于Na+/K+ATPase泵的动力学减慢。相比之下,我们的前期工作
结果表明,冷暴露的迟钝神经元表现为AP加宽减少,静息膜电位完整。
根据这些数据,我们使用全细胞和体外电生理学来评估松鼠
机械感受器具有耐寒的发电机械(目标2)。
据我们所知,这项研究是首次尝试剖析感冒的细胞机制--
适应哺乳动物的机械感觉。阐明极端寒冷中的神经功能有可能
为对抗临床低温手术后的神经元损伤提供新的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca Greenberg其他文献
Rebecca Greenberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of Triple Heat Flux Method for Robust Wearable Core Body Temperature Measurement
开发用于稳健可穿戴核心体温测量的三重热通量方法
- 批准号:
23K19094 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Calorie Restriction, Body Temperature and Alzheimers Disease
热量限制、体温和阿尔茨海默病
- 批准号:
10727319 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Regulated muscle-based thermogenesis for body temperature regulation
调节基于肌肉的生热作用以调节体温
- 批准号:
DP220102018 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Discovery Projects
Energy metabolism and disease sensitivity determined by body temperature: Lessons from hibernation
由体温决定的能量代谢和疾病敏感性:冬眠的教训
- 批准号:
21K19481 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
NSF Postdoctoral Fellowship in Biology FY 2021: Using a protoendothermic mammal to understand how body temperature influences nutrient absorption.
2021 财年 NSF 生物学博士后奖学金:利用原吸热哺乳动物了解体温如何影响营养吸收。
- 批准号:
2109649 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Fellowship Award
Practical realization of human body simulation model for predicting body temperature, blood pressure and blood flow rate
预测体温、血压、血流速度的人体仿真模型的实际实现
- 批准号:
20H02307 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Role of CREG1 on the regulation of thermogenic cells and body temperature
CREG1对产热细胞和体温调节的作用
- 批准号:
20K06450 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the molecular mechanisms of body temperature rhythms through a Drosophila model system
通过果蝇模型系统探索体温节律的分子机制
- 批准号:
10440755 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别:
A Low Cost Remote Body Temperature Monitoring and Symptom Diagnosis Solution
低成本远程体温监测和症状诊断解决方案
- 批准号:
69491 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别:
Feasibility Studies
Exploring the molecular mechanisms of body temperature rhythms through a Drosophila model system
通过果蝇模型系统探索体温节律的分子机制
- 批准号:
9979341 - 财政年份:2020
- 资助金额:
$ 4.77万 - 项目类别: