Virtual metabolomics as a discovery tool for novel cardiometabolic disease biology
虚拟代谢组学作为新型心脏代谢疾病生物学的发现工具
基本信息
- 批准号:10606582
- 负责人:
- 金额:$ 54.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAfricanAfrican ancestryAsianAutomobile DrivingBiologicalBiological AssayBiological MarkersBiologyBloodBlood specimenCardiacCardiometabolic DiseaseCardiovascular DiseasesClinicalCollectionCommunitiesConsumptionCoronary ArteriosclerosisCost SavingsDNADiabetes MellitusDiseaseDisease ProgressionElectronic Health RecordElectronic Medical Records and Genomics NetworkEmerging TechnologiesEpidemiologyEuropeanEuropean ancestryEventGenerationsGeneticGenotypeGoutHeritabilityHigh Density Lipoprotein CholesterolIndividualLDL Cholesterol LipoproteinsLinkMeasurableMeasurementMeasuresMetabolic DiseasesMetabolismModificationMorbidity - disease rateNon-Insulin-Dependent Diabetes MellitusObesityOutcomePathologicPathway interactionsPeripheral Vascular DiseasesPhenotypePlasmaPopulationPrevention strategyProcessRegistriesResearchResearch DesignResearch PersonnelRiskRisk MarkerSample SizeSamplingSingle Nucleotide PolymorphismSourceStrokeTarget PopulationsTestingTherapeuticTimeUnderrepresented PopulationsUrateValidationVulnerable Populationsbiobankbiomarker discoveryburden of illnesscardiometabolismcirculating biomarkersclinical diagnosisclinically relevantclinically significantcohortcostdata integrationdiagnostic strategydisease phenotypedisorder riskepidemiology studygenetic approachgenetic predictorsgenome wide association studyimprovedinnovationlarge scale datametabolomicsmortalitymulti-ethnicnew therapeutic targetnovelnovel markeronline resourceoptimal treatmentspersonalized strategiesphenomepleiotropismpredictive markerrisk stratificationtooltreatment strategyvirtualweb portal
项目摘要
PROJECT SUMMARY / ABSTRACT
Dysregulated metabolism underlies many of the leading causes of mortality and morbidity in the US including
cardiometabolic diseases. Metabolomics studies can identify novel disease biomarkers, novel therapeutic
targets, and biological pathways with pathological relevance. Emerging technologies in metabolomics allow
the interrogation of large numbers of metabolites from diverse pathways. However, these approaches remain
expensive and time-consuming. Applying metabolomics to very large cohorts of individuals to conduct
epidemiological studies is not feasible, due to the practical challenges and costs of implementing these assays
at scale. These challenges have limited discovery of novel biomarker-disease associations. We propose to
address these limitations with a genetics-based “virtual” metabolite study design that will allow us to define
genetic predictors of metabolite concentrations in a small population in whom the metabolite was measured,
and then use these genetic predictors to impute metabolite concentrations in a large population in whom the
metabolite was not measured. This approach vastly amplifies the sample size for discovery, and can rapidly
identify novel biomarkers for downstream validation. The primary aims of this proposal are to: 1) construct
single nucleotide polymorphism (SNP)-based predictors of circulating metabolites, and identify associations
with cardiometabolic phenotypes, including type 2 diabetes and coronary artery disease; 2) validate the
associations with direct metabolite measurements; 3) identify pleiotropic associations between metabolite
genetic predictors and the clinical phenome. These analyses are enabled by genetic approaches that allow us
to integrate data from large scale genome-wide association studies (GWAS) of cardiometabolic diseases and a
collection of electronic health record linked-DNA biobanks comprising over 700,000 subjects. Innovative
features of this approach include the efficiency and scale of the analysis, inclusion of under-represented and
vulnerable populations and implementation of a re-usable and scalable analytical framework that will
accelerate biomarker discovery and implementation. Upon completion of this project, we will construct a
publicly accessible online resource of metabolite-disease associations that will be available to researchers as a
source for both hypothesis testing and generation. Ultimately, these studies will advance the field of
metabolomics by rapidly advancing the process of linking metabolites to clinically-relevant diseases.
项目概要/摘要
新陈代谢失调是美国许多死亡和发病的主要原因,包括
心脏代谢疾病。代谢组学研究可以识别新的疾病生物标志物、新的治疗方法
目标和具有病理相关性的生物途径。代谢组学的新兴技术允许
对来自不同途径的大量代谢物进行询问。然而,这些方法仍然
昂贵且耗时。将代谢组学应用于非常大的个体群体中进行
由于实施这些检测的实际挑战和成本,流行病学研究是不可行的
规模化。这些挑战限制了新型生物标志物与疾病关联的发现。我们建议
通过基于遗传学的“虚拟”代谢物研究设计来解决这些限制,这将使我们能够定义
测量代谢物的小群体中代谢物浓度的遗传预测因子,
然后使用这些遗传预测因子来估算大量人群中的代谢物浓度,其中
没有测量代谢物。这种方法极大地扩大了发现的样本量,并且可以快速
确定用于下游验证的新型生物标志物。该提案的主要目标是:1)构建
基于单核苷酸多态性 (SNP) 的循环代谢物预测因子,并识别关联
患有心脏代谢表型,包括 2 型糖尿病和冠状动脉疾病; 2)验证
与直接代谢物测量的关联; 3) 识别代谢物之间的多效性关联
遗传预测因子和临床现象。这些分析是通过遗传方法实现的,使我们能够
整合来自心脏代谢疾病的大规模全基因组关联研究 (GWAS) 的数据和
电子健康记录关联 DNA 生物库的集合,包含超过 700,000 名受试者。创新的
这种方法的特点包括分析的效率和规模、纳入代表性不足和
弱势群体和实施可重复使用且可扩展的分析框架,该框架将
加速生物标志物的发现和实施。该项目完成后,我们将建设一个
代谢物疾病协会的可公开访问的在线资源,可供研究人员作为
假设检验和生成的来源。最终,这些研究将推动该领域的发展
通过快速推进将代谢物与临床相关疾病联系起来的过程来进行代谢组学。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Obesity influences composition of salivary and fecal microbiota and impacts the interactions between bacterial taxa.
- DOI:10.14814/phy2.15254
- 发表时间:2022-04
- 期刊:
- 影响因子:2.5
- 作者:Bombin A;Yan S;Bombin S;Mosley JD;Ferguson JF
- 通讯作者:Ferguson JF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane F Ferguson其他文献
Jane F Ferguson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane F Ferguson', 18)}}的其他基金
The role of alpha-aminoadipic acid (2-AAA) in residual CVD risk in T2D
α-氨基己二酸 (2-AAA) 在 T2D 残余 CVD 风险中的作用
- 批准号:
10713291 - 财政年份:2023
- 资助金额:
$ 54.29万 - 项目类别:
Virtual metabolomics as a discovery tool for novel cardiometabolic disease biology
虚拟代谢组学作为新型心脏代谢疾病生物学的发现工具
- 批准号:
9883038 - 财政年份:2019
- 资助金额:
$ 54.29万 - 项目类别:
Virtual metabolomics as a discovery tool for novel cardiometabolic disease biology
虚拟代谢组学作为新型心脏代谢疾病生物学的发现工具
- 批准号:
10414765 - 财政年份:2019
- 资助金额:
$ 54.29万 - 项目类别:
Determinants of alpha-aminoadipic acid (2-AAA) and relationship to diabetes
α-氨基己二酸 (2-AAA) 的决定因素及其与糖尿病的关系
- 批准号:
10164763 - 财政年份:2018
- 资助金额:
$ 54.29万 - 项目类别:
Determinants of alpha-aminoadipic acid (2-AAA) and relationship to diabetes
α-氨基己二酸 (2-AAA) 的决定因素及其与糖尿病的关系
- 批准号:
10447054 - 财政年份:2018
- 资助金额:
$ 54.29万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 54.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 54.29万 - 项目类别:
Operating Grants














{{item.name}}会员




