Improving functional MRI Analysis via Integrated One-Step Tensor-variate Methodology

通过集成一步张量变量方法改进功能 MRI 分析

基本信息

  • 批准号:
    10608866
  • 负责人:
  • 金额:
    $ 22.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-22 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary This proposal will deliver an innovative integrated statistical approach to analyze functional Magnetic Resonance Imaging (fMRI) data. The massive size of fMRI data has dictated, to date, a two-stage analysis, first reducing the temporal data at each voxel to a single activation value, followed by a spatial analysis for activated regions. Our basic premise is that an integrated one-stage, whole-brain data strategy will improve estimation and power even in studies with small sample sizes. The proposed methods will be generally applicable to fMRI data, but to illustrate the value of the methods, we will reanalyze publicly available datasets from two areas of importance to mental health. Suicide is a major public health concern, with the CDC reporting it to be the cause of two-thirds of all homicides in 2017, yet it remains highly unpredictable. Recent work provided fMRI data on 34 subjects upon exposing them to 10 words each with positive, negative or death-related connotations. Analysis of such involuntary data can reveal differences between suicide attempters and ideators, pinpoint subjects with elevated suicide risk, or identify the words with highest discriminatory power between groups, all useful outcomes for diagnosing and preventing suicide. Major Depressive Disorder (MDD) is projected to be the most prevalent cause of disease worldwide by 2030, yet only half of MDD patients receive treatment. A recent study provided fMRI data on 39 subjects using a validated emotional musical and nonmusical auditory paradigm. The long-term goal is to leverage music as a diagnostic or therapy for MDD. We will use our methods to re-evaluate sex, age, and other measured covariates, such as subject ratings of the music, which were previously only analyzed descriptively, to better detect differences in cerebral activation between MDD and controls, including one MDD subject with missing data due to excess motion in the machine. Our approach will directly model the complex, high-dimensional structure of fMRI data, including three spatial dimensions, time, and subject, by extending multivariate linear regression to a more natural and correct tensor-on-tensor linear regression framework, previously assumed to be computationally intractable. Our work will make it feasible and if the power advantages are as substantial as we expect, our approach should become the standard for fMRI data analysis in the future. The linear regression framework is familiar to practictioners, which along with the efficient, user-friendly software we will develop, will facilitate its wide adoption in the fMRI community. We develop tensor-on-tensor time series regression in Aim 1 and associated methods to classify patients and identify biomarkers in Aim 2. Application of our methods to a suicide and MDD datasets will serve to demonstrate the methods, while revealing actionable information about these two very important mental health challenges. More broadly, increased reliability and reproducibility with fewer subjects and shorter tasks will decrease the cost, time, and discomfort of future fMRI studies, and could encourage the adoption of fMRI in a clinical setting where pathology detection can be followed by diagnosis and appropriate intervention. Finally, the flexible statistical framework we provide will encourage further modeling innovation to accommodate challenges in and hypotheses about the structure of fMRI data, including those not yet imagine.
项目摘要 该提案将提供一种创新的综合统计方法来分析功能性磁共振成像 (fMRI)数据。迄今为止,fMRI数据的巨大规模决定了两阶段分析,首先减少时间数据, 将每个体素转换为单个激活值,然后对激活区域进行空间分析。我们的基本前提是, 即使在小样本量的研究中,集成的一阶段全脑数据策略也将改善估计和功效。 所提出的方法将普遍适用于fMRI数据,但为了说明方法的价值,我们将 重新分析来自两个对心理健康重要的领域的公开数据集。自杀是一个主要的公共卫生问题, 疾病预防控制中心报告说,它是2017年三分之二的凶杀案的原因,但它仍然非常不可预测。最近 一项研究提供了34名受试者的fMRI数据,这些受试者分别暴露于10个单词, 内涵对这些非自愿数据的分析可以揭示自杀者和自杀意念者之间的差异, 自杀风险升高的受试者,或识别组间具有最高区分力的单词,所有有用的结果 来诊断和预防自杀重度抑郁症(MDD)预计将是最常见的原因, 到2030年,世界范围内的MDD患者将减少到100%,但只有一半的MDD患者接受治疗。最近的一项研究提供了39名 受试者使用经验证的情感音乐和非音乐听觉范式。长期目标是利用音乐作为 MDD的诊断或治疗。我们将使用我们的方法重新评估性别、年龄和其他测量的协变量,如 作为音乐的主题评级,以前只进行了分析,以更好地检测大脑的差异, MDD和对照之间的激活,包括一名MDD受试者由于机器过度运动而丢失数据。 我们的方法将直接模拟功能磁共振成像数据的复杂,高维结构,包括三个空间维度, 通过将多元线性回归扩展为更自然和正确的张量对张量线性回归, 框架,以前被认为是计算上难以处理的。我们的工作将使其可行,如果权力的优势, 如我们所期望的那样,我们的方法应该成为未来功能磁共振成像数据分析的标准。线性 回归框架对于实践者来说是熟悉的,沿着我们将开发的高效、用户友好的软件, 促进其在功能磁共振成像社区的广泛采用。 我们在Aim 1中开发了张量对张量时间序列回归和相关方法来对患者进行分类并识别 目标2中的生物标志物。将我们的方法应用于自杀和MDD数据集将有助于演示该方法, 揭示关于这两个非常重要的心理健康挑战的可操作信息。更广泛地说,提高了可靠性 更少的受试者和更短的任务的可重复性将降低未来功能磁共振成像研究的成本,时间和不适, 并且可以鼓励功能磁共振成像在临床环境中的应用,在临床环境中,病理检测可以通过诊断来进行, 适当的干预。最后,我们提供的灵活的统计框架将鼓励进一步的建模创新, 适应功能磁共振成像数据结构的挑战和假设,包括那些还没有想象出来的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranjan Maitra其他文献

Ranjan Maitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranjan Maitra', 18)}}的其他基金

Improving functional MRI Analysis via Integrated One-Step Tensor-variate Methodology
通过集成一步张量变量方法改进功能 MRI 分析
  • 批准号:
    10708147
  • 财政年份:
    2022
  • 资助金额:
    $ 22.8万
  • 项目类别:
Statistical Methods for Improved Activation Detection in fMRI Studies
改进功能磁共振成像研究中激活检测的统计方法
  • 批准号:
    8584207
  • 财政年份:
    2013
  • 资助金额:
    $ 22.8万
  • 项目类别:
Statistical Methods for Improved Activation Detection in fMRI Studies
改进功能磁共振成像研究中激活检测的统计方法
  • 批准号:
    8703694
  • 财政年份:
    2013
  • 资助金额:
    $ 22.8万
  • 项目类别:

相似海外基金

Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
  • 批准号:
    ES/Y00860X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
  • 批准号:
    ES/T014709/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
  • 批准号:
    MR/X034925/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
  • 批准号:
    10751263
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
  • 批准号:
    DE240101039
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Discovery Early Career Researcher Award
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
  • 批准号:
    BB/Y006496/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Research Grant
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
  • 批准号:
    10984668
  • 财政年份:
    2024
  • 资助金额:
    $ 22.8万
  • 项目类别:
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluating the impact of changes in the proximity and density of vape retailers around secondary schools in Ontario on adolescent vaping behaviours
评估安大略省中学周围电子烟零售商的距离和密度变化对青少年电子烟行为的影响
  • 批准号:
    500515
  • 财政年份:
    2023
  • 资助金额:
    $ 22.8万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了