Improving functional MRI Analysis via Integrated One-Step Tensor-variate Methodology

通过集成一步张量变量方法改进功能 MRI 分析

基本信息

  • 批准号:
    10708147
  • 负责人:
  • 金额:
    $ 18.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-22 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary This proposal will deliver an innovative integrated statistical approach to analyze functional Magnetic Resonance Imaging (fMRI) data. The massive size of fMRI data has dictated, to date, a two-stage analysis, first reducing the temporal data at each voxel to a single activation value, followed by a spatial analysis for activated regions. Our basic premise is that an integrated one-stage, whole-brain data strategy will improve estimation and power even in studies with small sample sizes. The proposed methods will be generally applicable to fMRI data, but to illustrate the value of the methods, we will reanalyze publicly available datasets from two areas of importance to mental health. Suicide is a major public health concern, with the CDC reporting it to be the cause of two-thirds of all homicides in 2017, yet it remains highly unpredictable. Recent work provided fMRI data on 34 subjects upon exposing them to 10 words each with positive, negative or death-related connotations. Analysis of such involuntary data can reveal differences between suicide attempters and ideators, pinpoint subjects with elevated suicide risk, or identify the words with highest discriminatory power between groups, all useful outcomes for diagnosing and preventing suicide. Major Depressive Disorder (MDD) is projected to be the most prevalent cause of disease worldwide by 2030, yet only half of MDD patients receive treatment. A recent study provided fMRI data on 39 subjects using a validated emotional musical and nonmusical auditory paradigm. The long-term goal is to leverage music as a diagnostic or therapy for MDD. We will use our methods to re-evaluate sex, age, and other measured covariates, such as subject ratings of the music, which were previously only analyzed descriptively, to better detect differences in cerebral activation between MDD and controls, including one MDD subject with missing data due to excess motion in the machine. Our approach will directly model the complex, high-dimensional structure of fMRI data, including three spatial dimensions, time, and subject, by extending multivariate linear regression to a more natural and correct tensor-on-tensor linear regression framework, previously assumed to be computationally intractable. Our work will make it feasible and if the power advantages are as substantial as we expect, our approach should become the standard for fMRI data analysis in the future. The linear regression framework is familiar to practictioners, which along with the efficient, user-friendly software we will develop, will facilitate its wide adoption in the fMRI community. We develop tensor-on-tensor time series regression in Aim 1 and associated methods to classify patients and identify biomarkers in Aim 2. Application of our methods to a suicide and MDD datasets will serve to demonstrate the methods, while revealing actionable information about these two very important mental health challenges. More broadly, increased reliability and reproducibility with fewer subjects and shorter tasks will decrease the cost, time, and discomfort of future fMRI studies, and could encourage the adoption of fMRI in a clinical setting where pathology detection can be followed by diagnosis and appropriate intervention. Finally, the flexible statistical framework we provide will encourage further modeling innovation to accommodate challenges in and hypotheses about the structure of fMRI data, including those not yet imagine.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ranjan Maitra其他文献

Ranjan Maitra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ranjan Maitra', 18)}}的其他基金

Improving functional MRI Analysis via Integrated One-Step Tensor-variate Methodology
通过集成一步张量变量方法改进功能 MRI 分析
  • 批准号:
    10608866
  • 财政年份:
    2022
  • 资助金额:
    $ 18.95万
  • 项目类别:
Statistical Methods for Improved Activation Detection in fMRI Studies
改进功能磁共振成像研究中激活检测的统计方法
  • 批准号:
    8584207
  • 财政年份:
    2013
  • 资助金额:
    $ 18.95万
  • 项目类别:
Statistical Methods for Improved Activation Detection in fMRI Studies
改进功能磁共振成像研究中激活检测的统计方法
  • 批准号:
    8703694
  • 财政年份:
    2013
  • 资助金额:
    $ 18.95万
  • 项目类别:

相似海外基金

Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
  • 批准号:
    ES/Y00860X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
  • 批准号:
    ES/T014709/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
  • 批准号:
    MR/X034925/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
  • 批准号:
    10751263
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
  • 批准号:
    DE240101039
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Discovery Early Career Researcher Award
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
  • 批准号:
    BB/Y006496/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
    Research Grant
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
  • 批准号:
    10984668
  • 财政年份:
    2024
  • 资助金额:
    $ 18.95万
  • 项目类别:
Augmented Social Play (ASP): smartphone-enabled group psychotherapeutic interventions that boost adolescent mental health by supporting real-world connection and sense of belonging
增强社交游戏 (ASP):智能手机支持的团体心理治疗干预措施,通过支持现实世界的联系和归属感来促进青少年心理健康
  • 批准号:
    10077933
  • 财政年份:
    2023
  • 资助金额:
    $ 18.95万
  • 项目类别:
    EU-Funded
Family-Focused Adolescent & Lifelong Health Promotion (FLOURISH)
以家庭为中心的青少年
  • 批准号:
    10050850
  • 财政年份:
    2023
  • 资助金额:
    $ 18.95万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了