Leveraging electronic health records to identify risky alcohol use prior to surgery
利用电子健康记录在手术前识别危险的饮酒情况
基本信息
- 批准号:10604757
- 负责人:
- 金额:$ 38.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-10 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdverse eventAgreementAlcohol abuseAlcohol consumptionAlcohol withdrawal syndromeAlcoholsAlgorithmsBiological MarkersClassificationClinicClinicalClinical DataClinical ResearchCodeCollaborationsCommunitiesCommunity HealthComputer AssistedConsumptionDataData CollectionData ElementData SetEarly identificationElectronic Health RecordEvaluationEventFoundationsFundingFutureGuidelinesHealthHealth ExpendituresHealth Services AccessibilityHospitalsIndividualInstitutesInternational Classification of Disease CodesInterventionIntervention StudiesLabelLeadLength of StayLinkMachine LearningMeasuresMethodologyMethodsNatural Language ProcessingOperative Surgical ProceduresOpioidOutcomeOutcome StudyPatientsPharmaceutical PreparationsPhasePhenotypePostoperative PeriodPrecision HealthResearchResearch SupportRiskRisk FactorsSeveritiesStructureSurgical complicationTestingTimeTrainingWorkalcohol abstinencealcohol interventionalcohol riskalcohol screeningalcohol use disorderbasecare episodeclinical applicationcohortcomputable phenotypescomputerized toolscostdirect applicationearly alcohol useexperiencefuture implementationhealth care servicehigh riskhospital readmissionimplementation researchimprovedinnovationknowledgebaselongitudinal analysismachine learning methodmortalitynovelphosphatidylethanolpredictive testpreventprospectivestructured datasurgery outcomesurgical risktoolunstructured data
项目摘要
Project Summary/Abstract
Patients who consume more than two drinks a day prior to elective surgery are at increased risk of
experiencing a myriad of surgical complications, readmissions, and prolonged hospital stays. Fortunately,
short-term pre-operative abstinence from alcohol mitigates many surgical risks, and carefully timed
interventions can prevent complications and alcohol withdrawal syndrome. However, implementation of pre-
operative alcohol interventions requires accurate identification of patients with risky alcohol use at least four
weeks prior to surgery. Pre-operative clinics frequently fail to screen for alcohol use or do so too close to the
surgery date to allow time for intervention. Electronic health records (EHRs) offer an unprecedented amount of
accessible clinical data that can be leveraged to identify risky alcohol use early in the surgical episode of care.
Innovative methods are needed to identify data elements and create algorithms to capture risky alcohol use
from structured and unstructured EHR data. Natural language processing (NLP) and other machine learning
(ML)-based approaches are best suited to extract and analyze alcohol-related clinical narratives, and to
synthesize heterogeneous alcohol-related data through computer-assisted methods. The proposed study will
leverage EHR data to identify and characterize risky alcohol use among surgical patients to identify cohorts
who could benefit from pre-operative alcohol intervention. The study aims are to: 1) develop an electronic,
automated computable phenotype to classify risky alcohol use prior to surgery using NLP and ML; 2) validate
the algorithm through prospective data collection; and 3) longitudinally evaluate the association between risky
alcohol use phenotypes and adverse surgical outcomes including complications and hospital readmissions.
Innovative applications of NLP and ML will support evaluation of unstructured EHR data (e.g. clinical notes)
and will enable integration of heterogeneous alcohol use data to create the computable phenotype. The aims
will be achieved through collaboration of experts in key clinical domains and advanced methodologies. This
study will create and validate the first alcohol-specific phenotype-based algorithm for surgical patients, which
will support future clinical applications and research into alcohol-related surgical interventions and health
outcomes. Study outcomes are expected to have immediate value for identifying cohorts for future
implementation research and lead to a new clinical tool for surgical clinics.
项目总结/摘要
在择期手术前一天饮酒超过两杯的患者,
经历了无数的手术并发症、再次入院和长期住院。幸运的是,
术前短期戒酒可以降低许多手术风险,
干预措施可以预防并发症和酒精戒断综合症。然而,实施预-
有效的酒精干预需要准确识别危险酒精使用的患者,
手术前几周。术前诊所经常未能筛查酒精使用,或者这样做太接近
手术日期,以便有时间进行干预。电子健康记录(EHR)提供了前所未有的
可利用的临床数据,可用于在外科护理早期识别危险的酒精使用。
需要创新的方法来识别数据元素并创建算法来捕获危险的酒精使用
结构化和非结构化的EHR数据。自然语言处理(NLP)和其他机器学习
基于ML的方法最适合提取和分析酒精相关的临床叙述,
通过计算机辅助方法合成与酒精相关的异质数据。拟定的研究将
利用EHR数据识别和描述手术患者中的危险酒精使用,以确定队列
能从术前酒精干预中获益本研究的目的是:1)开发一种电子,
使用NLP和ML对手术前的危险酒精使用进行自动化可计算表型分类; 2)验证
该算法通过前瞻性的数据收集;和3)纵向评估风险之间的关联
酒精使用表型和不良手术结果,包括并发症和再次入院。
NLP和ML的创新应用将支持非结构化EHR数据(例如临床记录)的评估
并且将使得能够整合异质酒精使用数据以创建可计算表型。目标
将通过关键临床领域和先进方法的专家合作来实现。这
这项研究将为外科患者创建并验证第一个基于酒精特异性表型的算法,
将支持未来的临床应用和研究酒精相关的外科干预和健康
结果。研究结果预计对确定未来的队列具有直接价值
实施研究并为外科诊所带来新的临床工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Christie Fernandez其他文献
Anne Christie Fernandez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne Christie Fernandez', 18)}}的其他基金
4/4: The INTEGRATE Study: Evaluating INTEGRATEd care to Improve Biopsychosocial Outcomes of Early Liver Transplant for Alcohol-Associated Liver Disease
4/4:综合研究:评估综合护理以改善酒精相关性肝病早期肝移植的生物心理社会结果
- 批准号:
10710711 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Reducing Alcohol use among Elective Surgical Patients using Adaptive Interventions
使用适应性干预措施减少择期手术患者的饮酒量
- 批准号:
10337940 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Reducing Alcohol use among Elective Surgical Patients using Adaptive Interventions
使用适应性干预措施减少择期手术患者的饮酒量
- 批准号:
10616682 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Leveraging electronic health records to identify risky alcohol use prior to surgery
利用电子健康记录在手术前识别危险的饮酒情况
- 批准号:
10213578 - 财政年份:2020
- 资助金额:
$ 38.98万 - 项目类别:
Leveraging electronic health records to identify risky alcohol use prior to surgery
利用电子健康记录在手术前识别危险的饮酒情况
- 批准号:
10676250 - 财政年份:2020
- 资助金额:
$ 38.98万 - 项目类别:
Integrating Alcohol Screening, Brief Intervention, and Referral to Treatment into Presurgical Care
将酒精筛查、短暂干预和转诊治疗纳入术前护理
- 批准号:
9355372 - 财政年份:2016
- 资助金额:
$ 38.98万 - 项目类别:
Integrating Alcohol Screening, Brief Intervention, and Referral to Treatment into Presurgical Care
将酒精筛查、短暂干预和转诊治疗纳入术前护理
- 批准号:
9032886 - 财政年份:2016
- 资助金额:
$ 38.98万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.98万 - 项目类别:
Research Grant














{{item.name}}会员




