Understanding the Molecular Mechanisms of Fibromuscular Dysplasia

了解纤维肌发育不良的分子机制

基本信息

项目摘要

PROJECT SUMMARY Fibromuscular dysplasia (FMD) is an understudied and sometimes fatal medical enigma that can cause arterial fibrosis, stenosis, dissection, tortuosity, aneurysm and occlusion, throughout the body. Mean age at diagnosis is 50- 55 yrs and 94% are female. Although it has a prevalence of up to 5% in females, there is no specific treatment, and very little is known about its etiology. In the press, this lack of knowledge, underappreciated prevalence and sometimes fatal outcomes have led to FMD being called “The Rare Disease That Isn’t” (WSJ, June 27, 2009). Our team, world leaders in FMD, have advanced our knowledge of its clinical features. To address the lack of understanding about its cause, in 2013 we initiated the DEFINE-FMD study - a large, functional ‘omics study of the genetic and molecular basis of FMD. Already, DEFINE-FMD has helped provide important insights into the cause of FMD, showing that it has a complex (non-Mendelian) genetic basis. Here, we propose detailed functional and mechanistic studies to understand a top causal candidate for FMD that was identified in the DEFINE-FMD study – a critical regulatory gene network (RGN) we refer to as the “FMD-RGN.” Using differing approaches, we have repeatedly validated the association of this RGN with FMD, with P values consistently less than 1 x 10-16. In addition, we have identified that one of the top key drivers of the FMD-RGN is UBR4 (ubiquitin protein ligase E3 component n- recognin 4). UBR4 is a strong causal candidate for FMD, and we have already confirmed that it exerts strong effects on modulating the expression levels of other genes in the FMD-RGN. As our overall goals we aim to determine the specific effects of the FMD-RGN on the vascular cell and arterial phenotypes, and to understand the role of UBR4 in governing the FMD-RGN and in causing FMD. • In Specific Aim 1 we will undertake detailed analyses of the impact of UBR4 and the FMD-RGN on the cellular phenotype. We will perform a series of in vitro studies using human fibroblasts with knockdown and overexpression of UBR4 to understand the role of this gene and the FMD- RGN in FMD. • In Specific Aim 2 we will characterize the in vivo cardiovascular effects of cell-specific Ubr4 deletion. We will perform a series of in vivo studies in mice with endothelial-, smooth muscle cell-, and fibroblast- specific Ubr4 deletion. We will provide a detailed characterization of the cardiovascular phenotypes of these mouse lines, including histopathology, biomechanical properties by atomic force microscopy, and proteomics using liquid chromatography tandem mass spectrometry. • In Specific Aim 3 we will perform further studies to understand the in vivo fate and function of vascular cells expressing UBR4. We will apply single cell RNA sequencing and other cutting edge techniques to freshly obtained mouse and human artery samples to provide a decisive in vivo characterization of human UBR4-expressing vascular cells, and the cell-specific phenotypic effects of Ubr4 deletion in mice. Collectively, using these integrated but independent approaches, this R01 will fully dissect the molecular mechanisms of UBR4 and the FMD-RGN, to build a holistic functional picture of the vascular pathobiology of FMD. As a disease first reported in 1938, we believe these proposed studies on FMD are imperative, and long overdue.
项目概要 纤维肌性发育不良 (FMD) 是一个尚未得到充分研究、有时甚至是致命的医学谜题,它可能导致动脉粥样硬化 全身纤维化、狭窄、夹层、迂曲、动脉瘤和闭塞。诊断时的平均年龄为 50- 55岁,94%是女性。虽然女性患病率高达 5%,但尚无特效治疗方法,且 关于其病因知之甚少。在新闻界,这种知识的缺乏、普遍性的低估以及 有时致命的结果导致口蹄疫被称为“并非罕见的疾病”(《华尔街日报》,2009 年 6 月 27 日)。 我们的团队是口蹄疫领域的世界领导者,他们加深了对其临床特征的了解。为了解决缺乏 为了了解其原因,我们于 2013 年启动了 DEFINE-FMD 研究——一项针对 FMD 的大型功能性组学研究。 FMD 的遗传和分子基础。 DEFINE-FMD 已经帮助提供了有关 FMD 原因的重要见解 FMD,表明它具有复杂的(非孟德尔)遗传基础。在这里,我们提出了详细的功能和 机制研究,以了解 DEFINE-FMD 研究中确定的 FMD 的首要候选因果关系 - 关键调控基因网络 (RGN),我们称为“FMD-RGN”。使用不同的方法,我们有 反复验证该 RGN 与 FMD 的关联,P 值始终小于 1 x 10-16。此外, 我们已经确定 FMD-RGN 的最关键驱动因素之一是 UBR4(泛素蛋白连接酶 E3 成分 n-) 认识4)。 UBR4 是 FMD 的一个强有力的因果候选者,我们已经证实它具有很强的作用 调节 FMD-RGN 中其他基因的表达水平。作为我们的总体目标,我们旨在确定 FMD-RGN 对血管细胞和动脉表型的具体影响,并了解 UBR4 在 管理 FMD-RGN 并引起 FMD。 • 在具体目标 1 中,我们将对 UBR4 和 FMD-RGN 对细胞表型的影响。我们将使用以下方法进行一系列体外研究 敲低和过度表达 UBR4 的人成纤维细胞,以了解该基因和 FMD 的作用 FMD 中的 RGN。 • 在具体目标 2 中,我们将描述细胞特异性 Ubr4 对体内心血管的影响 删除。我们将在小鼠体内进行一系列体内研究,其中包括内皮细胞、平滑肌细胞和成纤维细胞 特定的 Ubr4 删除。我们将提供这些小鼠心血管表型的详细特征 线,包括组织病理学、原子力显微镜的生物力学特性以及使用液体的蛋白质组学 色谱串联质谱法。 • 在具体目标 3 中,我们将进行进一步的研究以了解 表达UBR4的血管细胞的体内命运和功能。我们将应用单细胞 RNA 测序 其他尖端技术对新鲜获得的小鼠和人类动脉样本提供了决定性的体内 表达人类 UBR4 的血管细胞的特征以及 Ubr4 缺失的细胞特异性表型效应 在小鼠中。总的来说,使用这些集成但独立的方法,这款 R01 将全面剖析分子 UBR4 和 FMD-RGN 的机制,以构建 FMD 血管病理学的整体功能图。 作为 1938 年首次报道的一种疾病,我们认为这些针对 FMD 的研究势在必行,而且早就该进行了。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Therapeutic targeting of cell transition: ready for clinical prime-time?
细胞转化的治疗靶向:准备好迎接临床黄金时段了吗?
  • DOI:
    10.1093/cvr/cvae029
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    vanderVorst,EmielPC;Kovacic,JasonC
  • 通讯作者:
    Kovacic,JasonC
Arterial dissections: Common features and new perspectives.
Endothelial to Mesenchymal Transition in Health and Disease.
健康和疾病中的内皮细胞向间质细胞的转变。
  • DOI:
    10.1146/annurev-physiol-032222-080806
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    18.2
  • 作者:
    Xu,Yang;Kovacic,JasonC
  • 通讯作者:
    Kovacic,JasonC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniella Kadian-Dodov其他文献

Daniella Kadian-Dodov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniella Kadian-Dodov', 18)}}的其他基金

Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
  • 批准号:
    10397407
  • 财政年份:
    2020
  • 资助金额:
    $ 67.62万
  • 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
  • 批准号:
    10162658
  • 财政年份:
    2020
  • 资助金额:
    $ 67.62万
  • 项目类别:
Understanding the Molecular Mechanisms of Fibromuscular Dysplasia
了解纤维肌发育不良的分子机制
  • 批准号:
    9974068
  • 财政年份:
    2020
  • 资助金额:
    $ 67.62万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.62万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.62万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.62万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 67.62万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 67.62万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 67.62万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 67.62万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 67.62万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 67.62万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 67.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了