Optimizing self-monitoring in a digital health intervention for weight loss
优化减肥数字健康干预中的自我监控
基本信息
- 批准号:10609075
- 负责人:
- 金额:$ 19.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAddressAdultBehavior TherapyBehavior monitoringBehavioralBody WeightBody Weight ChangesBody Weight decreasedCellular PhoneChronic DiseaseClinicalClinical TrialsCoupledDataDedicationsDemographic FactorsDietDietary intakeEatingEnergy IntakeEnrollmentEvaluationFeedbackGoalsGrantInterdisciplinary StudyInterventionInterviewK-Series Research Career ProgramsMeasuresMentorsMentorshipMethodologyMethodsMonitorObesityOutcomeOverweightPaperParticipantPatientsPersonsPhasePhysical activityPopulationPositioning AttributePreparationProcessPsychosocial FactorPublic HealthQualifyingRandomizedResearchResearch MethodologyResearch PersonnelResourcesRiskStructureTestingTrainingUniversitiesWeightWorkbehavior changecareerclinically significantcollaborative environmentcombatcostdesigndigitaldigital healthdigital interventiondigital tooldigital treatmentethnic minorityinnovationinsightmobile applicationmultiphase optimization strategynovelobesity treatmentportabilitypost interventionprogramsracial minorityrandomized trialrecruitremote deliveryretention ratesecondary outcomeskills trainingsuccesstheoriesweight loss interventionwireless electronic
项目摘要
PROJECT SUMMARY/ABSTRACT
Behavioral obesity treatments can produce clinically significant weight loss but are often too costly or intensive
to be implemented on a large scale. Standalone digital health interventions offer greater scalability than
traditional in-person approaches, but produce only modest weight loss. To maximize efficacy, it is vital to
determine the “active ingredients” of an intervention and eliminate the ineffective, or even detrimental, ones.
Self-monitoring is a core component of behavioral obesity treatment that can be delivered via digital tools, yet
little is known about the unique and combined impact of different self-monitoring strategies. The K23
candidate, Dr. Michele Patel, will address this gap by applying an innovative framework – the Multiphase
Optimization Strategy (MOST) – to identify the most potent combination of digital self-monitoring strategies for
weight loss. As the first part of this programmatic line of research, Dr. Patel will conduct a 6-month optimization
trial that randomizes 176 adults with overweight/obesity to 0-3 self-monitoring components (tracking dietary
intake, physical activity, and/or body weight) using a full factorial design. This study will leverage existing
commercial platforms for self-monitoring, including a mobile app, wearable activity monitor, and wireless
electronic scale. All participants will also receive an empirically- and theory-informed core weight loss
intervention that includes goal setting, weekly tailored feedback, action plans, and behavioral skills training –
components that enhance engagement and are well-supported by prior research. Aim 1a will examine the
optimal combination of self-monitoring strategies that maximizes 6-month weight loss while Aim 1b will
examine self-monitoring engagement and its association with weight loss. Aim 2 will evaluate barriers to and
facilitators of engaging in these self-monitoring strategies, which will be assessed via semi-structured
qualitative interviews with 40 trial participants. Aim 3 will assess a novel, interactive recruitment strategy via an
embedded trial. Together, results will inform an R01 grant that evaluates the newly optimized intervention in an
RCT. Building on Dr. Patel’s background in clinical trial methodology and behavioral obesity treatment, the
proposed career development award will provide substantive training in 1) MOST and factorial designs; 2)
qualitative and mixed methods research; 3) innovative recruitment and retention strategies; and 4) preparation
for the transition into independent research. To facilitate successful completion of these goals, Stanford
University’s outstanding environment for interdisciplinary research will be coupled with a highly-qualified, well-
rounded mentorship team comprised of Primary Mentor Dr. Abby King, Co-mentors Dr. Gary Bennett and Dr.
Lisa Rosas, and Consultants Mr. John Gallis (biostatistician) and Dr. Linda Collins (developer of MOST). This
K23 will position Dr. Patel to become a leader in optimizing digital interventions for weight loss and will launch
her career as an independent investigator dedicated to treating obesity through innovative solutions.
项目总结/摘要
行为肥胖治疗可以产生临床显着的体重减轻,但通常过于昂贵或密集
to be implemented实施on a large大scale规模.独立的数字健康干预措施提供了比
传统的面对面的方法,但只产生适度的减肥。为了最大限度地发挥功效,
确定干预措施的“有效成分”,消除无效甚至有害的成分。
自我监测是行为肥胖治疗的核心组成部分,可以通过数字化工具提供,但
人们对不同自我监测战略的独特和综合影响知之甚少。K23
候选人米歇尔·帕特尔博士将通过应用创新框架--多阶段
优化策略(MOST)-确定数字自我监控策略的最有效组合,
减肥.作为这一纲领性研究路线的第一部分,帕特尔博士将进行为期6个月的优化
将176名超重/肥胖成年人随机分为0-3个自我监测部分(跟踪饮食)
摄入量、体力活动和/或体重)。这项研究将利用现有的
用于自我监测的商业平台,包括移动的应用程序、可穿戴活动监测器和无线
电子秤所有参与者还将接受经验和理论指导的核心减肥
干预,包括目标设定,每周量身定制的反馈,行动计划和行为技能培训-
提高参与度的组成部分,并得到先前研究的充分支持。目标1a将审查
自我监控策略的最佳组合,使6个月的体重减轻最大化,而Aim 1b将
检查自我监控的参与度及其与减肥的关系。目标2将评估障碍,
参与这些自我监控策略的促进者,将通过半结构化的
对40名试验参与者进行定性访谈。目标3将评估一种新的,互动的招聘战略,
嵌入式试验总之,结果将告知R 01赠款,该赠款将评估新优化的干预措施,
RCT。基于Patel博士在临床试验方法学和行为肥胖治疗方面的背景,
拟议的职业发展奖将提供以下方面的实质性培训:1)社会变革管理计划和因子设计; 2)
定性和混合方法研究; 3)创新的招聘和保留战略;以及4)准备
过渡到独立研究。为了促进这些目标的顺利完成,斯坦福大学
大学优秀的跨学科研究环境将与一个高素质的,良好的,
由初级导师Abby King博士、共同导师加里班尼特博士和
丽莎罗萨斯和顾问约翰·加利斯先生(生物统计学家)和琳达柯林斯博士(MOST的开发者)。这
K23将使Patel博士成为优化数字干预减肥的领导者,并将推出
她的职业生涯是一个独立的调查员,致力于通过创新的解决方案治疗肥胖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Lanpher Patel其他文献
Michele Lanpher Patel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Lanpher Patel', 18)}}的其他基金
Optimizing self-monitoring in a digital health intervention for weight loss
优化减肥数字健康干预中的自我监控
- 批准号:
10448186 - 财政年份:2022
- 资助金额:
$ 19.41万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.41万 - 项目类别:
Research Grant