Measurement error correction approaches to wearable device-based measures of physical activity and self-reported measures of dietary intake in obesity and type 2 diabetes research
肥胖和 2 型糖尿病研究中基于可穿戴设备的体力活动测量和自我报告饮食摄入测量的测量误差校正方法
基本信息
- 批准号:10609059
- 负责人:
- 金额:$ 58.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerometerAddressAdultAffectAgeBehaviorBiological MarkersBiomedical ResearchBody mass indexCharacteristicsChronicClassificationClinicalComplexComplex MixturesComputer softwareDataData SetDatabasesDemographic FactorsDevicesDietary intakeEnergy IntakeEnsureEthnic OriginEvaluationFailureFatty acid glycerol estersFoodFrequenciesHealthIntakeInterventionLife StyleLinear RegressionsMeasurementMeasuresMethodologyMethodsModelingMonitorNational Health and Nutrition Examination SurveyNoiseNon-Insulin-Dependent Diabetes MellitusNutrientObesityOutcomePatient Self-ReportPatternPerformancePhysical activityPopulation HeterogeneityPrecision HealthProcessPropertyPublic HealthQuestionnairesRaceRecommendationRegression AnalysisResearchResearch PersonnelRoleSamplingSensitivity and SpecificityStatistical Data InterpretationStatistical MethodsStatistical ModelsSubgroupTestingValidationVariantVulnerable PopulationsWorkanalytical methoddesigndiscrete timeeffective interventionhealth outcome disparityhigh dimensionalityimprovedindexinginsightmodifiable behaviornovelrisk minimizationsemiparametricsexsimulationsoftware developmenttime intervalwearable device
项目摘要
Many current recommendations for dietary intake (DI) and physical activity (PA) to maintain optimal health and
minimize risks for chronic health conditions, such as obesity and type 2 diabetes (T2D), are based on statistical
analyses of data prone to measurement error, including those collected from self-reported questionnaires and
wearable devices. Self-reported measures based on food frequency questionnaires are often used in DI
assessments, however, they are prone to recall bias. Wearable devices enable the continuous monitoring of
PA but generate complex functional data with poorly characterized systematic errors. Our work and that of
others established that failure to account for measurement errors associated with scalar-valued covariates can
lead to severely biased estimates, the impacts of function-valued covariates prone to complex heteroscedastic
errors or mixtures of error-prone functional and scalar covariates are not well understood. Most work on
functional data views the data as smooth, latent curves obtained at discrete time intervals with some random
noise that is often regarded as a random process with mean zero and constant variance. By viewing this noise
as homoscedastic and independent, potential serial correlations are ignored. However, our preliminary studies
indicate that failure to account for these serial correlations in error-prone function-valued covariates can severely
bias estimations. Additionally, while classification methods of PA patterns using device-based PA data have
been proposed, there is limited work to correct for heteroscedastic measurement errors when classifying error-
prone function-valued covariates, such as device-based PA data. With the increased availability of complex,
massive high-dimensional function- and scalar-valued biomedical data, the need to correct for measurement
error biases within these datasets to permit their accurate evaluation in various regression settings is critical.
This project will address these current data limitations by developing novel statistical methods that correct for
the complex mixtures of measurement errors associated with device-based PA and self-reported measures of
DI applied to obesity and T2D research. Our primary objective is to investigate health outcome-related complex
covariate relationships in various U.S. subpopulations by designing and applying statistical models that correct
for error-prone DI and PA data biases. Aim 1: Identify latent groups of PA patterns based on device-based
functional curves prone to heteroscedastic measurement errors and determine the association between
identified PA patterns and T2D status, adjusting for PA biomarkers, age, sex, and race. Aim 2: Assess impacts
of measurement error in DI and PA data on the quantile functions of FMI and BMI, adjusting T2D status, age,
race, and sex. Aim 3: Construct generalized functional linear regression models with error-prone function- and
scalar-valued covariates to evaluate the influence of PA and DI on T2D status. This project will overcome current
analytic barriers to accurately evaluating the effects of DI and PA on obesity-related health outcomes.
目前许多关于饮食摄入量(DI)和体力活动(PA)的建议,以保持最佳的健康和
将肥胖和2型糖尿病(T2D)等慢性健康状况的风险降至最低是基于统计数据
分析容易出现测量误差的数据,包括从自填问卷收集的数据和
可穿戴设备。DI中经常使用基于食物频率问卷的自我报告测量
然而,在评估中,它们容易出现回忆偏差。可穿戴设备可持续监控
但会产生复杂的函数数据,而系统误差的表征很差。我们的工作和
其他人证实,未能解释与标量值协变量相关的测量误差可能会
导致估计严重偏倚,影响函数值协变量易出现复数异方差
错误或容易出错的泛函协变量和标量协变量的混合并不是很好的理解。大多数工作都是在
泛函数据将数据视为在离散时间间隔内获得的具有一定随机性的平滑、潜伏的曲线
通常被认为是均值为零且方差不变的随机过程的噪声。通过查看此噪声
由于同方差和独立,潜在的序列相关性被忽略。然而,我们的初步研究
这表明在容易出错函数值协变量中未能解释这些序列相关性可能会严重
有偏差的估计。此外,虽然使用基于设备的PA数据的PA模式的分类方法具有
已经提出,在对误差进行分类时,对异方差测量误差的校正工作有限。
倾向函数值协变量,例如基于设备的PA数据。随着Complex的可用性增加,
海量高维函数和标量值生物医学数据,需要进行测量校正
这些数据集中的误差偏差使其能够在各种回归设置中进行准确评估,这一点至关重要。
该项目将通过开发新的统计方法来解决这些当前数据的限制,以纠正
与基于设备的功放和自我报告的测量相关的测量误差的复杂混合
DI应用于肥胖和T2D研究。我们的主要目标是调查与健康结果相关的复合体
通过设计和应用统计模型来修正美国不同亚群中的协变量关系
针对易出错的DI和PA数据偏差。目标1:基于设备识别潜在的PA模式组
函数曲线容易出现异方差测量误差,并确定两者之间的关联
确定PA模式和T2D状态,根据PA生物标志物、年龄、性别和种族进行调整。目标2:评估影响
关于FMI和BMI分位数函数的DI和PA数据的测量误差,调整T2D状态、年龄、
种族,还有性爱。目标3:构造具有易错函数的广义泛函线性回归模型--和
标量值协变量来评估PA和DI对T2D状态的影响。这个项目将克服目前的
准确评估DI和PA对肥胖相关健康结果的影响的分析障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carmen D. Tekwe其他文献
Drug- not carrier-dependent haematological and biochemical changes in a repeated dose study of cyclosporine encapsulated polyester nano- and micro-particles: size does not matter.
环孢菌素封装的聚酯纳米和微粒重复剂量研究中药物非载体依赖性血液学和生化变化:大小并不重要。
- DOI:
10.1016/j.tox.2015.01.017 - 发表时间:
2015 - 期刊:
- 影响因子:4.5
- 作者:
V. Venkatpurwar;S. Rhodes;K. Oien;M. Elliott;Carmen D. Tekwe;H. Jørgensen;M. R. Kumar - 通讯作者:
M. R. Kumar
A cross-sectional study on the association of walnut consumption with obesity and relative fat mass among US adolescents and young adults in NHANES (2003-2020)
NHANES 中一项关于美国青少年和年轻人食用核桃与肥胖和相对脂肪量之间关系的横断面研究(2003-2020 年)
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.8
- 作者:
Nana Gletsu;Beate Henschel;Carmen D. Tekwe;K. Thiagarajah - 通讯作者:
K. Thiagarajah
Predicting Body Fat Percentage from Anthropometric Measurements in Asian Athletes
通过人体测量预测亚洲运动员的体脂百分比
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Liyan Huang;C. Teo;Yuanyuan Luan;Carmen D. Tekwe - 通讯作者:
Carmen D. Tekwe
Carmen D. Tekwe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 58.76万 - 项目类别:
Research Grant